Author: Mattias Jansson
Publisher: Linköping University Electronic Press
ISBN: 9179298834
Category : Electronic books
Languages : en
Pages : 77
Book Description
Nanostructured III-V semiconductors have emerged as one of the most promising materials systems for future optoelectronic applications. While planar III-V compounds are already at the center of the ongoing lighting revolution, where older light sources are replaced by modern white light LEDs, fabricating such materials in novel architectures, such as nanowires and quantum dots, creates new possibilities for optoelectronic applications. Not only do nanoscale structures allow the optically active III-V materials to be integrated with silicon microelectronics, but they also give rise to new fascinating properties inherent to the nanoscale. One of the key parameters considered when selecting materials for applications in light-emitting and photovoltaic devices is the band gap energy. While alloying of conventional III-V materials provides a certain degree of band gap tunability, a significantly enhanced possibility of band gap engineering is offered by so-called dilute nitrides, where incorporation of a small percentage of nitrogen into III-V compounds causes a dramatic down-shift of the conduction band edge. In addition, nitrogen-induced splitting of the conduction band in dilute nitrides can be utilized in intermediate band solar cells, belonging to the next generation of photovoltaic devices. For any material to be viable for optoelectronic applications, detailed knowledge of the electronic structure of the material, as well as a good understanding of carrier recombination processes is vital. For example, alloying may not only cause changes in the electronic structure but can also induce disorder. Disorder-induced potential fluctuations may alter charge carrier and exciton dynamics, and may even induce quantum confinement. Moreover, various defects in the material may introduce detrimental non-radiative (NR) states in the band gap deteriorating radiative efficiency. It is evident that, due to their different growth mechanisms, such properties could be markedly different in nanowires as compared to their planar counterparts. In this thesis, I aim to describe the electronic structure of dilute nitride nanowires, and its effects on the optical properties. Firstly, we investigate the electronic structure, and the structural and optical properties of novel GaNAsP nanowires, with a particular focus on the dominant recombination channels in the material. Secondly, we show how short-range fluctuations in the nitrogen content lead to the formation of quantum dots in dilute nitride nanowires, and investigate their electronic structure. Finally, we investigate the combined charge carrier and exciton dynamics of the quantum dots and effects of defects in their surroundings. Before considering individual sources of NR recombination, it is instructive to investigate the overall effects of nitrogen incorporation on the structural properties of the nanowires. In Paper I, we show that nitrogen incorporation up to 0.16% in Ga(N)AsP nanowires does not affect the overall structural quality of the material, nor does nitrogen degrade the good compositional uniformity of the nanowires. It is evident from our studies, however, that nitrogen incorporation has a strong and complex effect on recombination processes. We first show that nitrogen incorporation in GaNAsP nanowires reduces the NR recombination at room temperature as compared to the nitrogen-free nanowires (Paper I). This is in stark contrast to dilute nitride epilayers, where nitrogen incorporation enhances NR recombination. The reason for this difference is that in nanowires the surface recombination, rather than recombination via point defects, is the dominant NR recombination mechanism. We suggest that the nitrogen-induced suppression of the NR surface recombination in the nanowires is due to nitridation of the nanowire surface. Another NR recombination channel common in III-V nanowires is caused by the presence of structural defects, such as rotational twin planes and stacking faults. Interestingly, while nitrogen incorporation does not appear to affect the density of such structural defects, increasing nitrogen incorporation reduces the NR recombination via the structural defects (Paper II). This is explained by competing trapping of excited carriers/excitons to the localized states characteristic to dilute nitrides, and at nitrogen-induced NR defects. This effect is, however, only present at cryogenic temperatures, while at room temperature the NR recombination via the structural defects is not the dominant recombination channel. Importance of point defects in carrier recombination is highlighted in Paper III. Using the optically detected magnetic resonance technique, we show that gallium vacancies (VGa) that are formed within the nanowire volume act as efficient NR recombination centers, degrading optical efficiency of the Ga(N)AsP-based nanowires. Interestingly, while the defect formation is promoted by nitrogen incorporation, it is also readily present in ternary GaAsP nanowires. This contrasts with previous studies on planar structures, where VGa was not formed in the absence of nitrogen, unless subjected to irradiation by high-energy particles or heavy n-type doping. This, again, highlights how the defect formation is strikingly different in nanowires as compared to planar structures, likely due to the different growth processes. Potential fluctuations in the conduction band, caused by non-uniformity of the nitrogen incorporation, is characteristic to dilute nitrides and is known to cause exciton/carrier localization. We find that in dilute nitride nanowires, such fluctuations at the short range cause three-dimensional quantum confinement of excitons, resulting in optically active quantum dots with spectrally ultranarrow and highly polarized emission lines (Paper IV). A careful investigation of such quantum dots reveals that their properties are strongly dependent on the host material (Papers V, VI). While the principal quantization axis of the quantum dots formed in the ternary GaNAs nanowires is preferably oriented along the nanowire axis (Paper V), it switches to the direction perpendicular to the nanowire axis in the quaternary GaNAsP nanowires (Paper VI). Another aspect illustrating the influence of the host material on the quantum-dot properties is the electronic character of the captured hole. In both alloys, we show coexistence of quantum dots where the captured holes are of either a pure heavy-hole character or a mixed light-hole and heavy-hole character. In the GaNAs quantum dots, the main cause of the light- and heavy-hole splitting is uniaxial tensile strain induced by a combination of lattice mismatch with the nanowire core and local alloy fluctuations (Paper V). In the GaNAsP quantum dots, however, we suggest that the main mechanism for the light- and heavy-hole splitting is local fluctuations in the P/As ratio (Paper VI). Using time correlation single-photon counting, we show that the quantum dots in these dilute nitride nanowires behave as single photon emitters (Paper VI), confirming the three-dimensional quantum confinement of the emitters. Finally, since the quantum dots are formed by fluctuations mainly in the conduction band, only electrons are preferentially captured in the 0D confinement potential, whereas holes are expected to be mainly localized through the Coulomb interaction once an electron is captured by the quantum dot. In Paper VII, we investigate this rather peculiar capture mechanism, which we show to lead to unipolar, negative charging of the quantum dot. Moreover, we demonstrate that carrier capture by some quantum dots is strongly affected by the presence of defects in their local surroundings, which further alters the charge state of the quantum dot, where formation of the negatively charged exciton is promoted at the expense of its neutral counterpart. This underlines that the local surroundings of the quantum dots may greatly affect their properties and illustrates a possible way to exploit the defects for charge engineering of the quantum dots. In summary, in this thesis work, we identify several important non-radiative recombination processes in dilute nitride nanowires that can undermine the potential of these novel nanostructures for future optoelectronic applications. The gained knowledge could be found useful for designing strategies to mitigate these harmful processes, thereby improving the efficiency of future light-emitting and photovoltaic devices based on these nanowires. Furthermore, we uncover a set of optically bright quantum dot single-photon emitters embedded in the dilute nitride nanowires, and reveal their unusual electronic structure with strikingly different confinement potentials between electrons and holes. Our findings open a new pathway for charge engineering of the quantum dots in nanowires, attractive for applications in e.g. quantum computation and optical switching.
Magnetooptical properties of dilute nitride nanowires
Author: Mattias Jansson
Publisher: Linköping University Electronic Press
ISBN: 9179298834
Category : Electronic books
Languages : en
Pages : 77
Book Description
Nanostructured III-V semiconductors have emerged as one of the most promising materials systems for future optoelectronic applications. While planar III-V compounds are already at the center of the ongoing lighting revolution, where older light sources are replaced by modern white light LEDs, fabricating such materials in novel architectures, such as nanowires and quantum dots, creates new possibilities for optoelectronic applications. Not only do nanoscale structures allow the optically active III-V materials to be integrated with silicon microelectronics, but they also give rise to new fascinating properties inherent to the nanoscale. One of the key parameters considered when selecting materials for applications in light-emitting and photovoltaic devices is the band gap energy. While alloying of conventional III-V materials provides a certain degree of band gap tunability, a significantly enhanced possibility of band gap engineering is offered by so-called dilute nitrides, where incorporation of a small percentage of nitrogen into III-V compounds causes a dramatic down-shift of the conduction band edge. In addition, nitrogen-induced splitting of the conduction band in dilute nitrides can be utilized in intermediate band solar cells, belonging to the next generation of photovoltaic devices. For any material to be viable for optoelectronic applications, detailed knowledge of the electronic structure of the material, as well as a good understanding of carrier recombination processes is vital. For example, alloying may not only cause changes in the electronic structure but can also induce disorder. Disorder-induced potential fluctuations may alter charge carrier and exciton dynamics, and may even induce quantum confinement. Moreover, various defects in the material may introduce detrimental non-radiative (NR) states in the band gap deteriorating radiative efficiency. It is evident that, due to their different growth mechanisms, such properties could be markedly different in nanowires as compared to their planar counterparts. In this thesis, I aim to describe the electronic structure of dilute nitride nanowires, and its effects on the optical properties. Firstly, we investigate the electronic structure, and the structural and optical properties of novel GaNAsP nanowires, with a particular focus on the dominant recombination channels in the material. Secondly, we show how short-range fluctuations in the nitrogen content lead to the formation of quantum dots in dilute nitride nanowires, and investigate their electronic structure. Finally, we investigate the combined charge carrier and exciton dynamics of the quantum dots and effects of defects in their surroundings. Before considering individual sources of NR recombination, it is instructive to investigate the overall effects of nitrogen incorporation on the structural properties of the nanowires. In Paper I, we show that nitrogen incorporation up to 0.16% in Ga(N)AsP nanowires does not affect the overall structural quality of the material, nor does nitrogen degrade the good compositional uniformity of the nanowires. It is evident from our studies, however, that nitrogen incorporation has a strong and complex effect on recombination processes. We first show that nitrogen incorporation in GaNAsP nanowires reduces the NR recombination at room temperature as compared to the nitrogen-free nanowires (Paper I). This is in stark contrast to dilute nitride epilayers, where nitrogen incorporation enhances NR recombination. The reason for this difference is that in nanowires the surface recombination, rather than recombination via point defects, is the dominant NR recombination mechanism. We suggest that the nitrogen-induced suppression of the NR surface recombination in the nanowires is due to nitridation of the nanowire surface. Another NR recombination channel common in III-V nanowires is caused by the presence of structural defects, such as rotational twin planes and stacking faults. Interestingly, while nitrogen incorporation does not appear to affect the density of such structural defects, increasing nitrogen incorporation reduces the NR recombination via the structural defects (Paper II). This is explained by competing trapping of excited carriers/excitons to the localized states characteristic to dilute nitrides, and at nitrogen-induced NR defects. This effect is, however, only present at cryogenic temperatures, while at room temperature the NR recombination via the structural defects is not the dominant recombination channel. Importance of point defects in carrier recombination is highlighted in Paper III. Using the optically detected magnetic resonance technique, we show that gallium vacancies (VGa) that are formed within the nanowire volume act as efficient NR recombination centers, degrading optical efficiency of the Ga(N)AsP-based nanowires. Interestingly, while the defect formation is promoted by nitrogen incorporation, it is also readily present in ternary GaAsP nanowires. This contrasts with previous studies on planar structures, where VGa was not formed in the absence of nitrogen, unless subjected to irradiation by high-energy particles or heavy n-type doping. This, again, highlights how the defect formation is strikingly different in nanowires as compared to planar structures, likely due to the different growth processes. Potential fluctuations in the conduction band, caused by non-uniformity of the nitrogen incorporation, is characteristic to dilute nitrides and is known to cause exciton/carrier localization. We find that in dilute nitride nanowires, such fluctuations at the short range cause three-dimensional quantum confinement of excitons, resulting in optically active quantum dots with spectrally ultranarrow and highly polarized emission lines (Paper IV). A careful investigation of such quantum dots reveals that their properties are strongly dependent on the host material (Papers V, VI). While the principal quantization axis of the quantum dots formed in the ternary GaNAs nanowires is preferably oriented along the nanowire axis (Paper V), it switches to the direction perpendicular to the nanowire axis in the quaternary GaNAsP nanowires (Paper VI). Another aspect illustrating the influence of the host material on the quantum-dot properties is the electronic character of the captured hole. In both alloys, we show coexistence of quantum dots where the captured holes are of either a pure heavy-hole character or a mixed light-hole and heavy-hole character. In the GaNAs quantum dots, the main cause of the light- and heavy-hole splitting is uniaxial tensile strain induced by a combination of lattice mismatch with the nanowire core and local alloy fluctuations (Paper V). In the GaNAsP quantum dots, however, we suggest that the main mechanism for the light- and heavy-hole splitting is local fluctuations in the P/As ratio (Paper VI). Using time correlation single-photon counting, we show that the quantum dots in these dilute nitride nanowires behave as single photon emitters (Paper VI), confirming the three-dimensional quantum confinement of the emitters. Finally, since the quantum dots are formed by fluctuations mainly in the conduction band, only electrons are preferentially captured in the 0D confinement potential, whereas holes are expected to be mainly localized through the Coulomb interaction once an electron is captured by the quantum dot. In Paper VII, we investigate this rather peculiar capture mechanism, which we show to lead to unipolar, negative charging of the quantum dot. Moreover, we demonstrate that carrier capture by some quantum dots is strongly affected by the presence of defects in their local surroundings, which further alters the charge state of the quantum dot, where formation of the negatively charged exciton is promoted at the expense of its neutral counterpart. This underlines that the local surroundings of the quantum dots may greatly affect their properties and illustrates a possible way to exploit the defects for charge engineering of the quantum dots. In summary, in this thesis work, we identify several important non-radiative recombination processes in dilute nitride nanowires that can undermine the potential of these novel nanostructures for future optoelectronic applications. The gained knowledge could be found useful for designing strategies to mitigate these harmful processes, thereby improving the efficiency of future light-emitting and photovoltaic devices based on these nanowires. Furthermore, we uncover a set of optically bright quantum dot single-photon emitters embedded in the dilute nitride nanowires, and reveal their unusual electronic structure with strikingly different confinement potentials between electrons and holes. Our findings open a new pathway for charge engineering of the quantum dots in nanowires, attractive for applications in e.g. quantum computation and optical switching.
Publisher: Linköping University Electronic Press
ISBN: 9179298834
Category : Electronic books
Languages : en
Pages : 77
Book Description
Nanostructured III-V semiconductors have emerged as one of the most promising materials systems for future optoelectronic applications. While planar III-V compounds are already at the center of the ongoing lighting revolution, where older light sources are replaced by modern white light LEDs, fabricating such materials in novel architectures, such as nanowires and quantum dots, creates new possibilities for optoelectronic applications. Not only do nanoscale structures allow the optically active III-V materials to be integrated with silicon microelectronics, but they also give rise to new fascinating properties inherent to the nanoscale. One of the key parameters considered when selecting materials for applications in light-emitting and photovoltaic devices is the band gap energy. While alloying of conventional III-V materials provides a certain degree of band gap tunability, a significantly enhanced possibility of band gap engineering is offered by so-called dilute nitrides, where incorporation of a small percentage of nitrogen into III-V compounds causes a dramatic down-shift of the conduction band edge. In addition, nitrogen-induced splitting of the conduction band in dilute nitrides can be utilized in intermediate band solar cells, belonging to the next generation of photovoltaic devices. For any material to be viable for optoelectronic applications, detailed knowledge of the electronic structure of the material, as well as a good understanding of carrier recombination processes is vital. For example, alloying may not only cause changes in the electronic structure but can also induce disorder. Disorder-induced potential fluctuations may alter charge carrier and exciton dynamics, and may even induce quantum confinement. Moreover, various defects in the material may introduce detrimental non-radiative (NR) states in the band gap deteriorating radiative efficiency. It is evident that, due to their different growth mechanisms, such properties could be markedly different in nanowires as compared to their planar counterparts. In this thesis, I aim to describe the electronic structure of dilute nitride nanowires, and its effects on the optical properties. Firstly, we investigate the electronic structure, and the structural and optical properties of novel GaNAsP nanowires, with a particular focus on the dominant recombination channels in the material. Secondly, we show how short-range fluctuations in the nitrogen content lead to the formation of quantum dots in dilute nitride nanowires, and investigate their electronic structure. Finally, we investigate the combined charge carrier and exciton dynamics of the quantum dots and effects of defects in their surroundings. Before considering individual sources of NR recombination, it is instructive to investigate the overall effects of nitrogen incorporation on the structural properties of the nanowires. In Paper I, we show that nitrogen incorporation up to 0.16% in Ga(N)AsP nanowires does not affect the overall structural quality of the material, nor does nitrogen degrade the good compositional uniformity of the nanowires. It is evident from our studies, however, that nitrogen incorporation has a strong and complex effect on recombination processes. We first show that nitrogen incorporation in GaNAsP nanowires reduces the NR recombination at room temperature as compared to the nitrogen-free nanowires (Paper I). This is in stark contrast to dilute nitride epilayers, where nitrogen incorporation enhances NR recombination. The reason for this difference is that in nanowires the surface recombination, rather than recombination via point defects, is the dominant NR recombination mechanism. We suggest that the nitrogen-induced suppression of the NR surface recombination in the nanowires is due to nitridation of the nanowire surface. Another NR recombination channel common in III-V nanowires is caused by the presence of structural defects, such as rotational twin planes and stacking faults. Interestingly, while nitrogen incorporation does not appear to affect the density of such structural defects, increasing nitrogen incorporation reduces the NR recombination via the structural defects (Paper II). This is explained by competing trapping of excited carriers/excitons to the localized states characteristic to dilute nitrides, and at nitrogen-induced NR defects. This effect is, however, only present at cryogenic temperatures, while at room temperature the NR recombination via the structural defects is not the dominant recombination channel. Importance of point defects in carrier recombination is highlighted in Paper III. Using the optically detected magnetic resonance technique, we show that gallium vacancies (VGa) that are formed within the nanowire volume act as efficient NR recombination centers, degrading optical efficiency of the Ga(N)AsP-based nanowires. Interestingly, while the defect formation is promoted by nitrogen incorporation, it is also readily present in ternary GaAsP nanowires. This contrasts with previous studies on planar structures, where VGa was not formed in the absence of nitrogen, unless subjected to irradiation by high-energy particles or heavy n-type doping. This, again, highlights how the defect formation is strikingly different in nanowires as compared to planar structures, likely due to the different growth processes. Potential fluctuations in the conduction band, caused by non-uniformity of the nitrogen incorporation, is characteristic to dilute nitrides and is known to cause exciton/carrier localization. We find that in dilute nitride nanowires, such fluctuations at the short range cause three-dimensional quantum confinement of excitons, resulting in optically active quantum dots with spectrally ultranarrow and highly polarized emission lines (Paper IV). A careful investigation of such quantum dots reveals that their properties are strongly dependent on the host material (Papers V, VI). While the principal quantization axis of the quantum dots formed in the ternary GaNAs nanowires is preferably oriented along the nanowire axis (Paper V), it switches to the direction perpendicular to the nanowire axis in the quaternary GaNAsP nanowires (Paper VI). Another aspect illustrating the influence of the host material on the quantum-dot properties is the electronic character of the captured hole. In both alloys, we show coexistence of quantum dots where the captured holes are of either a pure heavy-hole character or a mixed light-hole and heavy-hole character. In the GaNAs quantum dots, the main cause of the light- and heavy-hole splitting is uniaxial tensile strain induced by a combination of lattice mismatch with the nanowire core and local alloy fluctuations (Paper V). In the GaNAsP quantum dots, however, we suggest that the main mechanism for the light- and heavy-hole splitting is local fluctuations in the P/As ratio (Paper VI). Using time correlation single-photon counting, we show that the quantum dots in these dilute nitride nanowires behave as single photon emitters (Paper VI), confirming the three-dimensional quantum confinement of the emitters. Finally, since the quantum dots are formed by fluctuations mainly in the conduction band, only electrons are preferentially captured in the 0D confinement potential, whereas holes are expected to be mainly localized through the Coulomb interaction once an electron is captured by the quantum dot. In Paper VII, we investigate this rather peculiar capture mechanism, which we show to lead to unipolar, negative charging of the quantum dot. Moreover, we demonstrate that carrier capture by some quantum dots is strongly affected by the presence of defects in their local surroundings, which further alters the charge state of the quantum dot, where formation of the negatively charged exciton is promoted at the expense of its neutral counterpart. This underlines that the local surroundings of the quantum dots may greatly affect their properties and illustrates a possible way to exploit the defects for charge engineering of the quantum dots. In summary, in this thesis work, we identify several important non-radiative recombination processes in dilute nitride nanowires that can undermine the potential of these novel nanostructures for future optoelectronic applications. The gained knowledge could be found useful for designing strategies to mitigate these harmful processes, thereby improving the efficiency of future light-emitting and photovoltaic devices based on these nanowires. Furthermore, we uncover a set of optically bright quantum dot single-photon emitters embedded in the dilute nitride nanowires, and reveal their unusual electronic structure with strikingly different confinement potentials between electrons and holes. Our findings open a new pathway for charge engineering of the quantum dots in nanowires, attractive for applications in e.g. quantum computation and optical switching.
Properties and Applications of Silicon Carbide
Author: Rosario Gerhardt
Publisher: BoD – Books on Demand
ISBN: 9533072016
Category : Science
Languages : en
Pages : 550
Book Description
In this book, we explore an eclectic mix of articles that highlight some new potential applications of SiC and different ways to achieve specific properties. Some articles describe well-established processing methods, while others highlight phase equilibria or machining methods. A resurgence of interest in the structural arena is evident, while new ways to utilize the interesting electromagnetic properties of SiC continue to increase.
Publisher: BoD – Books on Demand
ISBN: 9533072016
Category : Science
Languages : en
Pages : 550
Book Description
In this book, we explore an eclectic mix of articles that highlight some new potential applications of SiC and different ways to achieve specific properties. Some articles describe well-established processing methods, while others highlight phase equilibria or machining methods. A resurgence of interest in the structural arena is evident, while new ways to utilize the interesting electromagnetic properties of SiC continue to increase.
Dilute Nitride Semiconductors
Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0080455999
Category : Technology & Engineering
Languages : en
Pages : 648
Book Description
- This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field. - It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas. - Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community. The high speed lasers operating at wavelength of 1.3 μm and 1.55 μm are very important light sources in optical communications since the optical fiber used as a transport media of light has dispersion and attenuation minima, respectively, at these wavelengths. These long wavelengths are exclusively made of InP-based material InGaAsP/InP. However, there are several problems with this material system. Therefore, there has been considerable effort for many years to fabricate long wavelength laser structures on other substrates, especially GaAs. The manufacturing costs of GaAs-based components are lower and the processing techniques are well developed. In 1996 a novel quaternary material GaInAsN was proposed which could avoid several problems with the existing technology of long wavelength lasers. In this book, several leaders in the field of dilute nitrides will cover the growth and processing, experimental characterization, theoretical understanding, and device design and fabrication of this recently developed class of semiconductor alloys. They will review their current status of research and development. Dilute Nitrides (III-N-V) Semiconductors: Physics and Technology organises the most current available data, providing a ready source of information on a wide range of topics, making this book essential reading for all post graduate students, researchers and practitioners in the fields of Semiconductors and Optoelectronics - Contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field - Gives the reader easier access and better evaluation of future trends, conveying important results and current ideas - Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community
Publisher: Elsevier
ISBN: 0080455999
Category : Technology & Engineering
Languages : en
Pages : 648
Book Description
- This book contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field. - It gives the reader easier access and better evaluation of future trends, Conveying important results and current ideas. - Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community. The high speed lasers operating at wavelength of 1.3 μm and 1.55 μm are very important light sources in optical communications since the optical fiber used as a transport media of light has dispersion and attenuation minima, respectively, at these wavelengths. These long wavelengths are exclusively made of InP-based material InGaAsP/InP. However, there are several problems with this material system. Therefore, there has been considerable effort for many years to fabricate long wavelength laser structures on other substrates, especially GaAs. The manufacturing costs of GaAs-based components are lower and the processing techniques are well developed. In 1996 a novel quaternary material GaInAsN was proposed which could avoid several problems with the existing technology of long wavelength lasers. In this book, several leaders in the field of dilute nitrides will cover the growth and processing, experimental characterization, theoretical understanding, and device design and fabrication of this recently developed class of semiconductor alloys. They will review their current status of research and development. Dilute Nitrides (III-N-V) Semiconductors: Physics and Technology organises the most current available data, providing a ready source of information on a wide range of topics, making this book essential reading for all post graduate students, researchers and practitioners in the fields of Semiconductors and Optoelectronics - Contains full account of the advances made in the dilute nitrides, providing an excellent starting point for workers entering the field - Gives the reader easier access and better evaluation of future trends, conveying important results and current ideas - Includes a generous list of references at the end of each chapter, providing a useful reference to the III-V-N based semiconductors research community
Molecular Beam Epitaxy
Author: Hajime Asahi
Publisher: John Wiley & Sons
ISBN: 111935501X
Category : Science
Languages : en
Pages : 510
Book Description
Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.
Publisher: John Wiley & Sons
ISBN: 111935501X
Category : Science
Languages : en
Pages : 510
Book Description
Covers both the fundamentals and the state-of-the-art technology used for MBE Written by expert researchers working on the frontlines of the field, this book covers fundamentals of Molecular Beam Epitaxy (MBE) technology and science, as well as state-of-the-art MBE technology for electronic and optoelectronic device applications. MBE applications to magnetic semiconductor materials are also included for future magnetic and spintronic device applications. Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics is presented in five parts: Fundamentals of MBE; MBE technology for electronic devices application; MBE for optoelectronic devices; Magnetic semiconductors and spintronics devices; and Challenge of MBE to new materials and new researches. The book offers chapters covering the history of MBE; principles of MBE and fundamental mechanism of MBE growth; migration enhanced epitaxy and its application; quantum dot formation and selective area growth by MBE; MBE of III-nitride semiconductors for electronic devices; MBE for Tunnel-FETs; applications of III-V semiconductor quantum dots in optoelectronic devices; MBE of III-V and III-nitride heterostructures for optoelectronic devices with emission wavelengths from THz to ultraviolet; MBE of III-V semiconductors for mid-infrared photodetectors and solar cells; dilute magnetic semiconductor materials and ferromagnet/semiconductor heterostructures and their application to spintronic devices; applications of bismuth-containing III–V semiconductors in devices; MBE growth and device applications of Ga2O3; Heterovalent semiconductor structures and their device applications; and more. Includes chapters on the fundamentals of MBE Covers new challenging researches in MBE and new technologies Edited by two pioneers in the field of MBE with contributions from well-known MBE authors including three Al Cho MBE Award winners Part of the Materials for Electronic and Optoelectronic Applications series Molecular Beam Epitaxy: Materials and Applications for Electronics and Optoelectronics will appeal to graduate students, researchers in academia and industry, and others interested in the area of epitaxial growth.
Index to Theses with Abstracts Accepted for Higher Degrees by the Universities of Great Britain and Ireland and the Council for National Academic Awards
Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 398
Book Description
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 398
Book Description
2D Monoelemental Materials (Xenes) and Related Technologies
Author: Zongyu Huang
Publisher: CRC Press
ISBN: 1000562840
Category : Science
Languages : en
Pages : 166
Book Description
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.
Publisher: CRC Press
ISBN: 1000562840
Category : Science
Languages : en
Pages : 166
Book Description
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.
Physical Properties of Nanorods
Author: Roman Krahne
Publisher: Springer Science & Business Media
ISBN: 3642364306
Category : Science
Languages : en
Pages : 293
Book Description
Inorganic nanoparticles are among the most investigated objects nowadays, both in fundamental science and in various technical applications. In this book the physical properties of nanowires formed by nanoparticles with elongated shape, i.e. rod-like or wire-like, are described. The transition in the physical properties is analyzed for nanorods and nanowires consisting of spherical and rod-like nanoparticles. The physical properties of nanowires and elongated inorganic nanoparticles are reviewed too. The optical, electrical, magnetic, mechanical and catalytic properties of nanowires consisting of semiconductors, noble and various other metals, metal oxides properties and metal alloys are presented. The applications of nanorods and nanowires are discussed in the book.
Publisher: Springer Science & Business Media
ISBN: 3642364306
Category : Science
Languages : en
Pages : 293
Book Description
Inorganic nanoparticles are among the most investigated objects nowadays, both in fundamental science and in various technical applications. In this book the physical properties of nanowires formed by nanoparticles with elongated shape, i.e. rod-like or wire-like, are described. The transition in the physical properties is analyzed for nanorods and nanowires consisting of spherical and rod-like nanoparticles. The physical properties of nanowires and elongated inorganic nanoparticles are reviewed too. The optical, electrical, magnetic, mechanical and catalytic properties of nanowires consisting of semiconductors, noble and various other metals, metal oxides properties and metal alloys are presented. The applications of nanorods and nanowires are discussed in the book.
Compound Semiconductor Photonics
Author: Chua Soo-Jin
Publisher: CRC Press
ISBN: 9814310441
Category : Science
Languages : en
Pages : 230
Book Description
This proceeding is a collection of selected papers presented at Symposium O of Compound Semiconductor Photonics in the International Conference on Materials for Advanced Technology (ICMAT), which was held in Singapore from 28 June to 3 July 2009. The symposium covers a wide range of topics from fundamental semiconductor materials study to photonic device fabrication and application. The papers collected are of recent progress in the active and wide range of semiconductor photonics research. They include materials-related papers on III-As/P, III-nitride, quantum dot/wire/dash growth, ZnO, and chalcogenide, and devices-related papers on photonic crystals, VCSEL, quantum dot/dash lasers, LEDs, waveguides, solar cells and heterogeneous integrat
Publisher: CRC Press
ISBN: 9814310441
Category : Science
Languages : en
Pages : 230
Book Description
This proceeding is a collection of selected papers presented at Symposium O of Compound Semiconductor Photonics in the International Conference on Materials for Advanced Technology (ICMAT), which was held in Singapore from 28 June to 3 July 2009. The symposium covers a wide range of topics from fundamental semiconductor materials study to photonic device fabrication and application. The papers collected are of recent progress in the active and wide range of semiconductor photonics research. They include materials-related papers on III-As/P, III-nitride, quantum dot/wire/dash growth, ZnO, and chalcogenide, and devices-related papers on photonic crystals, VCSEL, quantum dot/dash lasers, LEDs, waveguides, solar cells and heterogeneous integrat
Springer Handbook of Electronic and Photonic Materials
Author: Safa Kasap
Publisher: Springer
ISBN: 331948933X
Category : Technology & Engineering
Languages : en
Pages : 1536
Book Description
The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.
Publisher: Springer
ISBN: 331948933X
Category : Technology & Engineering
Languages : en
Pages : 1536
Book Description
The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.
Optical Orientation
Author: F. Meier
Publisher: Elsevier
ISBN: 0444599916
Category : Science
Languages : en
Pages : 536
Book Description
This book comprises the first systematic exposition of various physical aspects of the orientation of electron and nuclear spins in semiconductors by optical means.
Publisher: Elsevier
ISBN: 0444599916
Category : Science
Languages : en
Pages : 536
Book Description
This book comprises the first systematic exposition of various physical aspects of the orientation of electron and nuclear spins in semiconductors by optical means.