Author: Hideaki Takayanagi
Publisher: World Scientific
ISBN: 9814487465
Category : Science
Languages : en
Pages : 547
Book Description
The realizations of physical systems whose quantum states can be directly manipulated have been pursued for experiments on fundamental problems in quantum mechanics and implementations of quantum information devices. Micro-fabricated superconducting systems and electronic spins are among the most promising candidates. This book contains the newest and most advanced research reports on such materials, called “Mesoscopic Superconductivity” and “Spintronics”. The former includes superconductor-semiconductor hybrid systems, very small Josephson junctions, and micron-size SQUIDs. The latter includes the control of spin transports in semiconductor heterostructures, nano-scale quantum dots, and spin injections. Superconductor-ferromagnetic metal hybrid structures are covered by both of the topics.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
Toward The Controllable Quantum States: Mesoscopic Superconductivity And Spintronics
Author: Hideaki Takayanagi
Publisher: World Scientific
ISBN: 9814487465
Category : Science
Languages : en
Pages : 547
Book Description
The realizations of physical systems whose quantum states can be directly manipulated have been pursued for experiments on fundamental problems in quantum mechanics and implementations of quantum information devices. Micro-fabricated superconducting systems and electronic spins are among the most promising candidates. This book contains the newest and most advanced research reports on such materials, called “Mesoscopic Superconductivity” and “Spintronics”. The former includes superconductor-semiconductor hybrid systems, very small Josephson junctions, and micron-size SQUIDs. The latter includes the control of spin transports in semiconductor heterostructures, nano-scale quantum dots, and spin injections. Superconductor-ferromagnetic metal hybrid structures are covered by both of the topics.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
Publisher: World Scientific
ISBN: 9814487465
Category : Science
Languages : en
Pages : 547
Book Description
The realizations of physical systems whose quantum states can be directly manipulated have been pursued for experiments on fundamental problems in quantum mechanics and implementations of quantum information devices. Micro-fabricated superconducting systems and electronic spins are among the most promising candidates. This book contains the newest and most advanced research reports on such materials, called “Mesoscopic Superconductivity” and “Spintronics”. The former includes superconductor-semiconductor hybrid systems, very small Josephson junctions, and micron-size SQUIDs. The latter includes the control of spin transports in semiconductor heterostructures, nano-scale quantum dots, and spin injections. Superconductor-ferromagnetic metal hybrid structures are covered by both of the topics.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
Spintronics
Author: Jean-Philippe Ansermet
Publisher: CRC Press
ISBN: 1040097936
Category : Science
Languages : en
Pages : 802
Book Description
A sound understanding of magnetism, transport theory, spin relaxation mechanisms, and magnetization dynamics is necessary to engage in spintronics research. In this primer, special effort has been made to give straightforward explanations for these advanced concepts. This book will be a valuable resource for graduate students in spintronics and related fields. Concepts of magnetism such as exchange interaction, spin-orbit coupling, spin canting, and magnetic anisotropy are introduced. Spin-dependent transport is described using both thermodynamics and Boltzmann’s equation, including Berry curvature corrections. Spin relaxation phenomenology is accounted for with master equations for quantum spin systems coupled to a bath. Magnetic resonance principles are applied to describe spin waves in ferromagnets, cavity-mode coupling in antiferromagnets, and coherence phenomena relevant to spin qubits applications. Key Features: • A pedagogical approach to foundational concepts in spintronics with simple models that can be calculated to enhance understanding. • Nineteen chapters, each beginning with a historical perspective and ending with an outlook on current research. • 1200 references, ranging from landmark papers to frontline publications. Jean-Philippe Ansermet is Professor Emeritus at École Polytechnique Fédérale de Lausanne (EPFL), where he pioneered experiments on giant magnetoresistance, current-induced magnetization switching, heat-driven spin torque, and nuclear magnetic resonance. He taught mechanics, thermodynamics, and spin dynamics for more than twenty years. A fellow of the American Physical Society and recipient of the 2022 Credit Suisse Teaching Award, he was an executive board member of the European Physical Society, president of the Swiss Physical Society, and teaching director at EPFL. He has authored or co-authored textbooks on mechanics and thermodynamics and published more than two hundred articles.
Publisher: CRC Press
ISBN: 1040097936
Category : Science
Languages : en
Pages : 802
Book Description
A sound understanding of magnetism, transport theory, spin relaxation mechanisms, and magnetization dynamics is necessary to engage in spintronics research. In this primer, special effort has been made to give straightforward explanations for these advanced concepts. This book will be a valuable resource for graduate students in spintronics and related fields. Concepts of magnetism such as exchange interaction, spin-orbit coupling, spin canting, and magnetic anisotropy are introduced. Spin-dependent transport is described using both thermodynamics and Boltzmann’s equation, including Berry curvature corrections. Spin relaxation phenomenology is accounted for with master equations for quantum spin systems coupled to a bath. Magnetic resonance principles are applied to describe spin waves in ferromagnets, cavity-mode coupling in antiferromagnets, and coherence phenomena relevant to spin qubits applications. Key Features: • A pedagogical approach to foundational concepts in spintronics with simple models that can be calculated to enhance understanding. • Nineteen chapters, each beginning with a historical perspective and ending with an outlook on current research. • 1200 references, ranging from landmark papers to frontline publications. Jean-Philippe Ansermet is Professor Emeritus at École Polytechnique Fédérale de Lausanne (EPFL), where he pioneered experiments on giant magnetoresistance, current-induced magnetization switching, heat-driven spin torque, and nuclear magnetic resonance. He taught mechanics, thermodynamics, and spin dynamics for more than twenty years. A fellow of the American Physical Society and recipient of the 2022 Credit Suisse Teaching Award, he was an executive board member of the European Physical Society, president of the Swiss Physical Society, and teaching director at EPFL. He has authored or co-authored textbooks on mechanics and thermodynamics and published more than two hundred articles.
Quantum Phenomena in Mesoscopic Systems
Author: B. Altshuler
Publisher: IOS Press
ISBN: 1614990077
Category : Science
Languages : en
Pages : 473
Book Description
This book is a snapshot of the vision shared by outstanding scientists on the key theoretical and experimental issues in Mesoscopic Physics. Quantum properties of electrons in solid state devices and transport in semiconducting and superconducting low-dimensional systems, are discussed, as well as the basis of quantum computing (entanglement, noise decoherence and read-out). Each chapter collects the material presented at a Varenna School course of last year, by leading experts in the field. The reader gets a flavor, how theorists and experimentalists are paving the way to the physical realization of solid state qubits, the basic units of the new logic and memory elements for quantum processing. He will be surprised in finding that mesoscopic solid state devices, which were invented just yesterday ( think of the Single Electron Transistor, or the Cooper Pair Box) are currently used as charge-sensing applications in the equipment of frontier research laboratories. These devices contribute as probing systems to produce evidence on still unsettled questions in topics like the metal-insulator transition in disordered two dimensional systems, quantum Hall conductance in heterostructures, or Kondo conductance in quantum dots.
Publisher: IOS Press
ISBN: 1614990077
Category : Science
Languages : en
Pages : 473
Book Description
This book is a snapshot of the vision shared by outstanding scientists on the key theoretical and experimental issues in Mesoscopic Physics. Quantum properties of electrons in solid state devices and transport in semiconducting and superconducting low-dimensional systems, are discussed, as well as the basis of quantum computing (entanglement, noise decoherence and read-out). Each chapter collects the material presented at a Varenna School course of last year, by leading experts in the field. The reader gets a flavor, how theorists and experimentalists are paving the way to the physical realization of solid state qubits, the basic units of the new logic and memory elements for quantum processing. He will be surprised in finding that mesoscopic solid state devices, which were invented just yesterday ( think of the Single Electron Transistor, or the Cooper Pair Box) are currently used as charge-sensing applications in the equipment of frontier research laboratories. These devices contribute as probing systems to produce evidence on still unsettled questions in topics like the metal-insulator transition in disordered two dimensional systems, quantum Hall conductance in heterostructures, or Kondo conductance in quantum dots.
Semiconductor Spintronics and Quantum Computation
Author: D.D. Awschalom
Publisher: Springer Science & Business Media
ISBN: 366205003X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.
Publisher: Springer Science & Business Media
ISBN: 366205003X
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
The past few decades of research and development in solid-state semicon ductor physics and electronics have witnessed a rapid growth in the drive to exploit quantum mechanics in the design and function of semiconductor devices. This has been fueled for instance by the remarkable advances in our ability to fabricate nanostructures such as quantum wells, quantum wires and quantum dots. Despite this contemporary focus on semiconductor "quantum devices," a principal quantum mechanical aspect of the electron - its spin has it accounts for an added quan largely been ignored (except in as much as tum mechanical degeneracy). In recent years, however, a new paradigm of electronics based on the spin degree of freedom of the electron has begun to emerge. This field of semiconductor "spintronics" (spin transport electron ics or spin-based electronics) places electron spin rather than charge at the very center of interest. The underlying basis for this new electronics is the intimate connection between the charge and spin degrees of freedom of the electron via the Pauli principle. A crucial implication of this relationship is that spin effects can often be accessed through the orbital properties of the electron in the solid state. Examples for this are optical measurements of the spin state based on the Faraday effect and spin-dependent transport measure ments such as giant magneto-resistance (GMR). In this manner, information can be encoded in not only the electron's charge but also in its spin state, i. e.
Macroscopic Quantum Coherence and Quantum Computing
Author: Dmitri V. Averin
Publisher: Springer Science & Business Media
ISBN: 146151245X
Category : Science
Languages : en
Pages : 459
Book Description
This volume is an outgrowth of the Second International Workshop on Macroscopic Quantum Coherence and Computing held in Napoli, Italy, in June 2000. This workshop gathered a number of experts from the major Universities and Research Institutions of several countries. The choice of the location, which recognizes the role and the traditions of Naples in this field, guaranteed the participants a stimulating atmosphere. The aim of the workshop has been to report on the recent theoretical and experimental results on the macroscopic quantum coherence of macroscopic systems. Particular attention was devoted to Josephson devices. The correlation with other atomic and molecular systems, exhibiting a macroscopic quantum behaviour, was also discussed. The seminars provided both historical overview and recent theoretical ground on the topic, as well as information on new experimental results relative to the quantum computing area. The first workshop on this topic, held in Napoli in 1998, has been ennobled by important reports on observations of Macroscopic Quantum Coherence in mesoscopic systems. The current workshop proposed, among many stimulating results, the first observations of Macroscopic Quantum Coherence between macroscopically distinct fluxoid states in rf SQUIDs, 20 years after the Leggett's proposal to experimentally test the quantum behavior of macroscopic systems. Reports on observations of quantum behaviour in molecular and magnetic systems, small Josephson devices, quantum dots have also been particularly stimulating in view of the realization of several possible q-bits.
Publisher: Springer Science & Business Media
ISBN: 146151245X
Category : Science
Languages : en
Pages : 459
Book Description
This volume is an outgrowth of the Second International Workshop on Macroscopic Quantum Coherence and Computing held in Napoli, Italy, in June 2000. This workshop gathered a number of experts from the major Universities and Research Institutions of several countries. The choice of the location, which recognizes the role and the traditions of Naples in this field, guaranteed the participants a stimulating atmosphere. The aim of the workshop has been to report on the recent theoretical and experimental results on the macroscopic quantum coherence of macroscopic systems. Particular attention was devoted to Josephson devices. The correlation with other atomic and molecular systems, exhibiting a macroscopic quantum behaviour, was also discussed. The seminars provided both historical overview and recent theoretical ground on the topic, as well as information on new experimental results relative to the quantum computing area. The first workshop on this topic, held in Napoli in 1998, has been ennobled by important reports on observations of Macroscopic Quantum Coherence in mesoscopic systems. The current workshop proposed, among many stimulating results, the first observations of Macroscopic Quantum Coherence between macroscopically distinct fluxoid states in rf SQUIDs, 20 years after the Leggett's proposal to experimentally test the quantum behavior of macroscopic systems. Reports on observations of quantum behaviour in molecular and magnetic systems, small Josephson devices, quantum dots have also been particularly stimulating in view of the realization of several possible q-bits.
Spintronics
Author: Tomasz Blachowicz
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110490633
Category : Science
Languages : en
Pages : 302
Book Description
Starting from quantum mechanical and condensed matter foundations, this book introduces into the necessary theory behind spin electronics (Spintronics). Equations of spin diffusion, -evolution and -tunelling are provided before an overview is given of simulation of spin transport at the atomic scale. Furthermore, applications are discussed with a focus on elementary spintronics devices such as spin valves, memory cells and hard disk heads.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110490633
Category : Science
Languages : en
Pages : 302
Book Description
Starting from quantum mechanical and condensed matter foundations, this book introduces into the necessary theory behind spin electronics (Spintronics). Equations of spin diffusion, -evolution and -tunelling are provided before an overview is given of simulation of spin transport at the atomic scale. Furthermore, applications are discussed with a focus on elementary spintronics devices such as spin valves, memory cells and hard disk heads.
Solid State PhysicsMetastable, Spintronics Materials and Mechanics of Deformable Bodies
Author: Subbarayan Sivasankaran
Publisher: BoD – Books on Demand
ISBN: 1838811648
Category : Science
Languages : en
Pages : 238
Book Description
This book describes the recent evolution of solid-state physics, which is primarily dedicated to examining the behavior of solids at the atomic scale. It also presents various state-of-the-art reviews and original contributions related to solid-state sciences. The book consists of four sections, namely, solid-state behavior, metastable materials, spintronics materials, and mechanics of deformable bodies. The authors’ contributions relating to solid-state behavior deal with the performance of solid matters pertaining to quantum mechanics, physical metallurgy, and crystallography. The authors’ contributions relating to metastable materials demonstrate the behavior of amorphous/bulk metallic glasses and some nonequilibrium materials. The authors’ contributions relating to spintronic materials explain the principles and equations underlying the physics, transport, and dynamics of spin in solid-state systems. The authors’ contributions relating to the mechanics of deformable bodies deal with applications of numeric and analytic solutions/models for solid-state structures under deformation. Key Features:Issues in solid-state physics, Lagrangian quantum mechanics,Quantum and thermal behavior of HCP crystals,Thermoelectric properties of semiconductors,Bulk metallic glasses and metastable atomic density determination,Applications of spintronics and Heusler alloys, 2D elastostatic, mathematical modeling and dynamic stiffness methods on deformable bodies.
Publisher: BoD – Books on Demand
ISBN: 1838811648
Category : Science
Languages : en
Pages : 238
Book Description
This book describes the recent evolution of solid-state physics, which is primarily dedicated to examining the behavior of solids at the atomic scale. It also presents various state-of-the-art reviews and original contributions related to solid-state sciences. The book consists of four sections, namely, solid-state behavior, metastable materials, spintronics materials, and mechanics of deformable bodies. The authors’ contributions relating to solid-state behavior deal with the performance of solid matters pertaining to quantum mechanics, physical metallurgy, and crystallography. The authors’ contributions relating to metastable materials demonstrate the behavior of amorphous/bulk metallic glasses and some nonequilibrium materials. The authors’ contributions relating to spintronic materials explain the principles and equations underlying the physics, transport, and dynamics of spin in solid-state systems. The authors’ contributions relating to the mechanics of deformable bodies deal with applications of numeric and analytic solutions/models for solid-state structures under deformation. Key Features:Issues in solid-state physics, Lagrangian quantum mechanics,Quantum and thermal behavior of HCP crystals,Thermoelectric properties of semiconductors,Bulk metallic glasses and metastable atomic density determination,Applications of spintronics and Heusler alloys, 2D elastostatic, mathematical modeling and dynamic stiffness methods on deformable bodies.
Functional Nanostructures and Metamaterials for Superconducting Spintronics
Author: Anatolie Sidorenko
Publisher: Springer
ISBN: 3319904817
Category : Science
Languages : en
Pages : 279
Book Description
This book demonstrates how the new phenomena in the nanometer scale serve as the basis for the invention and development of novel nanoelectronic devices and how they are used for engineering nanostructures and metamaterials with unusual properties. It discusses topics such as superconducting spin-valve effect and thermal spin transport, which are important for developing spintronics; fabrication of nanostructures from antagonistic materials like ferromagnets and superconductors, which lead to a novel non-conventional FFLO-superconducting state; calculations of functional nanostructures with an exotic triplet superconductivity, which are the basis for novel nanoelectronic devices, such as superconducting spin valve, thin-film superconducting quantum interference devices (SQUIDs) and memory-elements (MRAM). Starting with theoretical chapters about triplet superconductivity, the book then introduces new ideas and approaches in the fundamentals of superconducting electronics. It presents various quantum devices based on the new theoretical approaches, demonstrating the enormous potential of the electronics of 21st century - spintronics. The book is useful for a broad audience, including researchers, engineers, PhD graduates, students and others wanting to gain insights into the frontiers of nanoscience.
Publisher: Springer
ISBN: 3319904817
Category : Science
Languages : en
Pages : 279
Book Description
This book demonstrates how the new phenomena in the nanometer scale serve as the basis for the invention and development of novel nanoelectronic devices and how they are used for engineering nanostructures and metamaterials with unusual properties. It discusses topics such as superconducting spin-valve effect and thermal spin transport, which are important for developing spintronics; fabrication of nanostructures from antagonistic materials like ferromagnets and superconductors, which lead to a novel non-conventional FFLO-superconducting state; calculations of functional nanostructures with an exotic triplet superconductivity, which are the basis for novel nanoelectronic devices, such as superconducting spin valve, thin-film superconducting quantum interference devices (SQUIDs) and memory-elements (MRAM). Starting with theoretical chapters about triplet superconductivity, the book then introduces new ideas and approaches in the fundamentals of superconducting electronics. It presents various quantum devices based on the new theoretical approaches, demonstrating the enormous potential of the electronics of 21st century - spintronics. The book is useful for a broad audience, including researchers, engineers, PhD graduates, students and others wanting to gain insights into the frontiers of nanoscience.
Topological Insulators
Author: Gregory Tkachov
Publisher: CRC Press
ISBN: 9814613266
Category : Science
Languages : en
Pages : 180
Book Description
This book is the result of dynamic developments that have occurred in condensed matter physics after the recent discovery of a new class of electronic materials: topological insulators. A topological insulator is a material that behaves as a band insulator in its interior, while acting as a metallic conductor at its surface. The surface current car
Publisher: CRC Press
ISBN: 9814613266
Category : Science
Languages : en
Pages : 180
Book Description
This book is the result of dynamic developments that have occurred in condensed matter physics after the recent discovery of a new class of electronic materials: topological insulators. A topological insulator is a material that behaves as a band insulator in its interior, while acting as a metallic conductor at its surface. The surface current car
The Möbius Strip Topology
Author: Klaus Möbius
Publisher: CRC Press
ISBN: 1000522407
Category : Science
Languages : en
Pages : 926
Book Description
In the 19th century, pure mathematics research reached a climax in Germany, and Carl Friedrich Gauss (1777–1855) was an epochal example. August Ferdinand Möbius (1790–1868) was his doctoral student whose work was profoundly influenced by him. In the 18th century, it had been mostly the French school of applied mathematics that enabled the rapid developments of science and technology in Europe. How could this shift happen? It can be argued that the major reasons were the devastating consequences of the Napoleonic Wars in Central Europe, leading to the total defeat of Prussia in 1806. Immediately following, far-reaching reforms of the entire state system were carried out in Prussia and other German states, also affecting the educational system. It now guaranteed freedom of university teaching and research. This attracted many creative people with new ideas enabling the “golden age” of pure mathematics and fundamental theory in physical sciences. Möbius’ legacy reaches far into today’s sciences, arts, and architecture. The famous one-sided Möbius strip is a paradigmatic example of the ongoing fascination with mathematical topology. This is the first book to present numerous detailed case studies on Möbius topology in science and the humanities. It is written for those who believe in the power of ideas in our culture, experts and laymen alike.
Publisher: CRC Press
ISBN: 1000522407
Category : Science
Languages : en
Pages : 926
Book Description
In the 19th century, pure mathematics research reached a climax in Germany, and Carl Friedrich Gauss (1777–1855) was an epochal example. August Ferdinand Möbius (1790–1868) was his doctoral student whose work was profoundly influenced by him. In the 18th century, it had been mostly the French school of applied mathematics that enabled the rapid developments of science and technology in Europe. How could this shift happen? It can be argued that the major reasons were the devastating consequences of the Napoleonic Wars in Central Europe, leading to the total defeat of Prussia in 1806. Immediately following, far-reaching reforms of the entire state system were carried out in Prussia and other German states, also affecting the educational system. It now guaranteed freedom of university teaching and research. This attracted many creative people with new ideas enabling the “golden age” of pure mathematics and fundamental theory in physical sciences. Möbius’ legacy reaches far into today’s sciences, arts, and architecture. The famous one-sided Möbius strip is a paradigmatic example of the ongoing fascination with mathematical topology. This is the first book to present numerous detailed case studies on Möbius topology in science and the humanities. It is written for those who believe in the power of ideas in our culture, experts and laymen alike.