Recent Advances in Econometrics and Statistics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Recent Advances in Econometrics and Statistics PDF full book. Access full book title Recent Advances in Econometrics and Statistics by Matteo Barigozzi. Download full books in PDF and EPUB format.

Recent Advances in Econometrics and Statistics

Recent Advances in Econometrics and Statistics PDF Author: Matteo Barigozzi
Publisher: Springer Nature
ISBN: 303161853X
Category :
Languages : en
Pages : 617

Book Description


Recent Advances in Econometrics and Statistics

Recent Advances in Econometrics and Statistics PDF Author: Matteo Barigozzi
Publisher: Springer Nature
ISBN: 303161853X
Category :
Languages : en
Pages : 617

Book Description


Macroeconomic Forecasting in the Era of Big Data

Macroeconomic Forecasting in the Era of Big Data PDF Author: Peter Fuleky
Publisher: Springer Nature
ISBN: 3030311503
Category : Business & Economics
Languages : en
Pages : 716

Book Description
This book surveys big data tools used in macroeconomic forecasting and addresses related econometric issues, including how to capture dynamic relationships among variables; how to select parsimonious models; how to deal with model uncertainty, instability, non-stationarity, and mixed frequency data; and how to evaluate forecasts, among others. Each chapter is self-contained with references, and provides solid background information, while also reviewing the latest advances in the field. Accordingly, the book offers a valuable resource for researchers, professional forecasters, and students of quantitative economics.

Dynamic Factor Models

Dynamic Factor Models PDF Author: Jörg Breitung
Publisher:
ISBN: 9783865580979
Category :
Languages : en
Pages : 29

Book Description


The Oxford Handbook of Economic Forecasting

The Oxford Handbook of Economic Forecasting PDF Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732

Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.

Partial Identification in Econometrics and Related Topics

Partial Identification in Econometrics and Related Topics PDF Author: Nguyen Ngoc Thach
Publisher: Springer Nature
ISBN: 3031591100
Category :
Languages : en
Pages : 724

Book Description


Aggregation and the Microfoundations of Dynamic Macroeconomics

Aggregation and the Microfoundations of Dynamic Macroeconomics PDF Author: Mario Forni
Publisher: Oxford University Press
ISBN: 9780198288008
Category : Business & Economics
Languages : en
Pages : 264

Book Description
Through careful methodological analysis, this book argues that modern macroeconomics has completely overlooked the aggregate nature of the data. In Part I, the authors test and reject the homogeneity assumption using disaggregate data. In Part II, they demonstrate that apart from random flukes, cointegration unidirectional Granger causality and restrictions on parameters do not survive aggregation when heterogeneity is introduced. They conclude that the claim that modern macroeconomics has solid microfoundations is unwarranted. However, some important theory-based models that do not fit aggregate data well in their representative-agent version can be reconciled with aggregate data by introducing heterogeneity.

Big Data Analytics

Big Data Analytics PDF Author: Arun K. Somani
Publisher: CRC Press
ISBN: 1351180320
Category : Computers
Languages : en
Pages : 399

Book Description
The proposed book will discuss various aspects of big data Analytics. It will deliberate upon the tools, technology, applications, use cases and research directions in the field. Chapters would be contributed by researchers, scientist and practitioners from various reputed universities and organizations for the benefit of readers.

Bayesian Multivariate Time Series Methods for Empirical Macroeconomics

Bayesian Multivariate Time Series Methods for Empirical Macroeconomics PDF Author: Gary Koop
Publisher: Now Publishers Inc
ISBN: 160198362X
Category : Business & Economics
Languages : en
Pages : 104

Book Description
Bayesian Multivariate Time Series Methods for Empirical Macroeconomics provides a survey of the Bayesian methods used in modern empirical macroeconomics. These models have been developed to address the fact that most questions of interest to empirical macroeconomists involve several variables and must be addressed using multivariate time series methods. Many different multivariate time series models have been used in macroeconomics, but Vector Autoregressive (VAR) models have been among the most popular. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics reviews and extends the Bayesian literature on VARs, TVP-VARs and TVP-FAVARs with a focus on the practitioner. The authors go beyond simply defining each model, but specify how to use them in practice, discuss the advantages and disadvantages of each and offer tips on when and why each model can be used.

Dynamic Linear Models with R

Dynamic Linear Models with R PDF Author: Giovanni Petris
Publisher: Springer Science & Business Media
ISBN: 0387772383
Category : Mathematics
Languages : en
Pages : 258

Book Description
State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Statistical Learning for Big Dependent Data

Statistical Learning for Big Dependent Data PDF Author: Daniel Peña
Publisher: John Wiley & Sons
ISBN: 1119417384
Category : Mathematics
Languages : en
Pages : 562

Book Description
Master advanced topics in the analysis of large, dynamically dependent datasets with this insightful resource Statistical Learning with Big Dependent Data delivers a comprehensive presentation of the statistical and machine learning methods useful for analyzing and forecasting large and dynamically dependent data sets. The book presents automatic procedures for modelling and forecasting large sets of time series data. Beginning with some visualization tools, the book discusses procedures and methods for finding outliers, clusters, and other types of heterogeneity in big dependent data. It then introduces various dimension reduction methods, including regularization and factor models such as regularized Lasso in the presence of dynamical dependence and dynamic factor models. The book also covers other forecasting procedures, including index models, partial least squares, boosting, and now-casting. It further presents machine-learning methods, including neural network, deep learning, classification and regression trees and random forests. Finally, procedures for modelling and forecasting spatio-temporal dependent data are also presented. Throughout the book, the advantages and disadvantages of the methods discussed are given. The book uses real-world examples to demonstrate applications, including use of many R packages. Finally, an R package associated with the book is available to assist readers in reproducing the analyses of examples and to facilitate real applications. Analysis of Big Dependent Data includes a wide variety of topics for modeling and understanding big dependent data, like: New ways to plot large sets of time series An automatic procedure to build univariate ARMA models for individual components of a large data set Powerful outlier detection procedures for large sets of related time series New methods for finding the number of clusters of time series and discrimination methods , including vector support machines, for time series Broad coverage of dynamic factor models including new representations and estimation methods for generalized dynamic factor models Discussion on the usefulness of lasso with time series and an evaluation of several machine learning procedure for forecasting large sets of time series Forecasting large sets of time series with exogenous variables, including discussions of index models, partial least squares, and boosting. Introduction of modern procedures for modeling and forecasting spatio-temporal data Perfect for PhD students and researchers in business, economics, engineering, and science: Statistical Learning with Big Dependent Data also belongs to the bookshelves of practitioners in these fields who hope to improve their understanding of statistical and machine learning methods for analyzing and forecasting big dependent data.