Machine Vision Algorithms in Java

Machine Vision Algorithms in Java PDF Author: Paul F. Whelan
Publisher: Springer Science & Business Media
ISBN: 9781852332181
Category : Computers
Languages : en
Pages : 308

Book Description
This book presents key machine vision techniques and algorithms, along with the associated Java source code. Special features include a complete self-contained treatment of all topics and techniques essential to the understanding and implementation of machine vision; an introduction to object-oriented programming and to the Java programming language, with particular reference to its imaging capabilities; Java source code for a wide range of real-world image processing and analysis functions; an introduction to the Java 2D imaging and Java Advanced Imaging (JAI) API; and a wide range of illustrative examples.

Machine Vision Algorithms in Java

Machine Vision Algorithms in Java PDF Author: Paul F. Whelan
Publisher: Springer Science & Business Media
ISBN: 1447102517
Category : Computers
Languages : en
Pages : 293

Book Description
This book presents key machine vision techniques and algorithms, along with the associated Java source code. Special features include a complete self-contained treatment of all topics and techniques essential to the understanding and implementation of machine vision; an introduction to object-oriented programming and to the Java programming language, with particular reference to its imaging capabilities; Java source code for a wide range of real-world image processing and analysis functions; an introduction to the Java 2D imaging and Java Advanced Imaging (JAI) API; and a wide range of illustrative examples.

Hands-On Java Deep Learning for Computer Vision

Hands-On Java Deep Learning for Computer Vision PDF Author: Klevis Ramo
Publisher: Packt Publishing Ltd
ISBN: 1838552138
Category : Computers
Languages : en
Pages : 253

Book Description
Leverage the power of Java and deep learning to build production-grade Computer Vision applications Key FeaturesBuild real-world Computer Vision applications using the power of neural networks Implement image classification, object detection, and face recognitionKnow best practices on effectively building and deploying deep learning models in JavaBook Description Although machine learning is an exciting world to explore, you may feel confused by all of its theoretical aspects. As a Java developer, you will be used to telling the computer exactly what to do, instead of being shown how data is generated; this causes many developers to struggle to adapt to machine learning. The goal of this book is to walk you through the process of efficiently training machine learning and deep learning models for Computer Vision using the most up-to-date techniques. The book is designed to familiarize you with neural networks, enabling you to train them efficiently, customize existing state-of-the-art architectures, build real-world Java applications, and get great results in a short space of time. You will build real-world Computer Vision applications, ranging from a simple Java handwritten digit recognition model to real-time Java autonomous car driving systems and face recognition models. By the end of this book, you will have mastered the best practices and modern techniques needed to build advanced Computer Vision Java applications and achieve production-grade accuracy. What you will learnDiscover neural networks and their applications in Computer VisionExplore the popular Java frameworks and libraries for deep learningBuild deep neural networks in Java Implement an end-to-end image classification application in JavaPerform real-time video object detection using deep learningEnhance performance and deploy applications for productionWho this book is for This book is for data scientists, machine learning developers and deep learning practitioners with Java knowledge who want to implement machine learning and deep neural networks in the computer vision domain. You will need to have a basic knowledge of Java programming.

Programming Computer Vision with Python

Programming Computer Vision with Python PDF Author: Jan Erik Solem
Publisher: "O'Reilly Media, Inc."
ISBN: 1449341934
Category : Computers
Languages : en
Pages : 262

Book Description
If you want a basic understanding of computer vision’s underlying theory and algorithms, this hands-on introduction is the ideal place to start. You’ll learn techniques for object recognition, 3D reconstruction, stereo imaging, augmented reality, and other computer vision applications as you follow clear examples written in Python. Programming Computer Vision with Python explains computer vision in broad terms that won’t bog you down in theory. You get complete code samples with explanations on how to reproduce and build upon each example, along with exercises to help you apply what you’ve learned. This book is ideal for students, researchers, and enthusiasts with basic programming and standard mathematical skills. Learn techniques used in robot navigation, medical image analysis, and other computer vision applications Work with image mappings and transforms, such as texture warping and panorama creation Compute 3D reconstructions from several images of the same scene Organize images based on similarity or content, using clustering methods Build efficient image retrieval techniques to search for images based on visual content Use algorithms to classify image content and recognize objects Access the popular OpenCV library through a Python interface

Numerical Algorithms

Numerical Algorithms PDF Author: Justin Solomon
Publisher: CRC Press
ISBN: 1482251892
Category : Computers
Languages : en
Pages : 400

Book Description
Numerical Algorithms: Methods for Computer Vision, Machine Learning, and Graphics presents a new approach to numerical analysis for modern computer scientists. Using examples from a broad base of computational tasks, including data processing, computational photography, and animation, the textbook introduces numerical modeling and algorithmic desig

Digital Image Processing

Digital Image Processing PDF Author: Wilhelm Burger
Publisher: Springer Science & Business Media
ISBN: 9781846283796
Category : Computers
Languages : en
Pages : 596

Book Description
Written as an introduction for undergraduate students, this textbook covers the most important methods in digital image processing. Formal and mathematical aspects are discussed at a fundamental level and various practical examples and exercises supplement the text. The book uses the image processing environment ImageJ, freely distributed by the National Institute of Health. A comprehensive website supports the book, and contains full source code for all examples in the book, a question and answer forum, slides for instructors, etc. Digital Image Processing in Java is the definitive textbook for computer science students studying image processing and digital processing.

Machine Learning in Java

Machine Learning in Java PDF Author: AshishSingh Bhatia
Publisher: Packt Publishing Ltd
ISBN: 1788473892
Category : Mathematics
Languages : en
Pages : 290

Book Description
Leverage the power of Java and its associated machine learning libraries to build powerful predictive models Key FeaturesSolve predictive modeling problems using the most popular machine learning Java libraries Explore data processing, machine learning, and NLP concepts using JavaML, WEKA, MALLET librariesPractical examples, tips, and tricks to help you understand applied machine learning in JavaBook Description As the amount of data in the world continues to grow at an almost incomprehensible rate, being able to understand and process data is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, spam detection, document search, and trading strategies, to speech recognition. This makes machine learning well-suited to the present-day era of big data and Data Science. The main challenge is how to transform data into actionable knowledge. Machine Learning in Java will provide you with the techniques and tools you need. You will start by learning how to apply machine learning methods to a variety of common tasks including classification, prediction, forecasting, market basket analysis, and clustering. The code in this book works for JDK 8 and above, the code is tested on JDK 11. Moving on, you will discover how to detect anomalies and fraud, and ways to perform activity recognition, image recognition, and text analysis. By the end of the book, you will have explored related web resources and technologies that will help you take your learning to the next level. By applying the most effective machine learning methods to real-world problems, you will gain hands-on experience that will transform the way you think about data. What you will learnDiscover key Java machine learning librariesImplement concepts such as classification, regression, and clusteringDevelop a customer retention strategy by predicting likely churn candidatesBuild a scalable recommendation engine with Apache MahoutApply machine learning to fraud, anomaly, and outlier detectionExperiment with deep learning concepts and algorithmsWrite your own activity recognition model for eHealth applicationsWho this book is for If you want to learn how to use Java's machine learning libraries to gain insight from your data, this book is for you. It will get you up and running quickly and provide you with the skills you need to successfully create, customize, and deploy machine learning applications with ease. You should be familiar with Java programming and some basic data mining concepts to make the most of this book, but no prior experience with machine learning is required.

Practical Java Machine Learning

Practical Java Machine Learning PDF Author: Mark Wickham
Publisher:
ISBN: 9781484239520
Category : Java (Computer program language)
Languages : en
Pages :

Book Description
Build machine learning (ML) solutions for Java development. This book shows you that when designing ML apps, data is the key driver and must be considered throughout all phases of the project life cycle. Practical Java Machine Learning helps you understand the importance of data and how to organize it for use within your ML project. You will be introduced to tools which can help you identify and manage your data including JSON, visualization, NoSQL databases, and cloud platforms including Google Cloud Platform and Amazon Web Services. Practical Java Machine Learning includes multiple projects, with particular focus on the Android mobile platform and features such as sensors, camera, and connectivity, each of which produce data that can power unique machine learning solutions. You will learn to build a variety of applications that demonstrate the capabilities of the Google Cloud Platform machine learning API, including data visualization for Java; document classification using the Weka ML environment; audio file classification for Android using ML with spectrogram voice data; and machine learning using device sensor data. After reading this book, you will come away with case study examples and projects that you can take away as templates for re-use and exploration for your own machine learning programming projects with Java. You will: Identify, organize, and architect the data required for ML projects Deploy ML solutions in conjunction with cloud providers such as Google and Amazon Determine which algorithm is the most appropriate for a specific ML problem Implement Java ML solutions on Android mobile devices Create Java ML solutions to work with sensor data Build Java streaming based solutions.

Algorithms for Image Processing and Computer Vision

Algorithms for Image Processing and Computer Vision PDF Author: J. R. Parker
Publisher: John Wiley & Sons
ISBN: 1118021886
Category : Computers
Languages : en
Pages : 498

Book Description
A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It’s an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists who require highly specialized image processing. Algorithms now exist for a wide variety of sophisticated image processing applications required by software engineers and developers, advanced programmers, graphics programmers, scientists, and related specialists This bestselling book has been completely updated to include the latest algorithms, including 2D vision methods in content-based searches, details on modern classifier methods, and graphics cards used as image processing computational aids Saves hours of mathematical calculating by using distributed processing and GPU programming, and gives non-mathematicians the shortcuts needed to program relatively sophisticated applications. Algorithms for Image Processing and Computer Vision, 2nd Edition provides the tools to speed development of image processing applications.

A Concise and Practical Introduction to Programming Algorithms in Java

A Concise and Practical Introduction to Programming Algorithms in Java PDF Author: Frank Nielsen
Publisher: Springer Science & Business Media
ISBN: 1848823398
Category : Computers
Languages : en
Pages : 266

Book Description
A Concise and Practical Introduction to Programming Algorithms in Java has two main goals. The first is for novice programmers to learn progressively the basic concepts underlying most imperative programming languages using Java. The second goal is to introduce new programmers to the very basic principles of thinking the algorithmic way and turning the algorithms into programs using the programming concepts of Java. The book is divided into two parts and includes: The fundamental notions of variables, expressions and assignments with type checking - Conditional and loop statements - Explanation of the concepts of functions with pass-by-value arguments and recursion - Fundamental sequential and bisection search techniques - Basic iterative and recursive sorting algorithms. Each chapter of the book concludes with a set of exercises to enable students to practice concepts covered.