Author: Evan Pradipta Hardinatha
Publisher: RantAI
ISBN:
Category : Computers
Languages : en
Pages : 131
Book Description
Transform Machine Learning with Rust! 🤖🦀 Introducing MLVR - Machine Learning via Rust—the groundbreaking textbook that seamlessly blends the theoretical rigor of machine learning with the modern, high-performance capabilities of the Rust programming language! 🚀 Whether you're a student embarking on your machine learning journey or a professional looking to elevate your skills, MLVR is your comprehensive guide to mastering machine learning with Rust’s unparalleled strengths in performance, safety, and concurrency. ✨ Why Choose MLVR? 🔍 Comprehensive Coverage: From classical models like linear regression and neural networks to cutting-edge techniques such as AutoML and reinforcement learning, MLVR covers it all. 💡 Modern Integration: Leverage Rust’s unique ownership model and advanced type system to implement machine learning algorithms with unmatched safety and efficiency. 🛠️ Practical Implementation: Benefit from step-by-step coding guides, clear explanations, and real-world applications that bridge the gap between theory and practice. 🤖 Performance & Safety: Harness Rust’s core strengths to build machine learning models that are not only fast but also memory-safe and concurrent. Unlock the Benefits: ✅ High Performance: Optimize machine learning models to run at peak speed using Rust’s low-level control without compromising on safety. ✅ Scalable Solutions: Implement scalable and efficient machine learning systems that can handle large datasets and complex computations. ✅ Robust Deployments: Deploy machine learning models with confidence, knowing that Rust’s strong type system and ownership model prevent common programming errors. What You'll Explore: Foundations of Machine Learning: Understand the essential concepts and algorithms that form the backbone of machine learning. Advanced Techniques: Dive into sophisticated methods like AutoML and reinforcement learning, tailored for Rust’s ecosystem. Real-World Applications: Apply your knowledge to real-world projects, showcasing the practical power of Rust in machine learning. Optimization Strategies: Learn how to fine-tune your models for maximum performance and efficiency using Rust’s capabilities. Perfect For: Students seeking a solid foundation in machine learning with a modern programming language. Professionals aiming to enhance their machine learning expertise and optimize their Rust projects. Developers of all levels who want to implement, optimize, and deploy machine learning models effectively using Rust. Embrace the future of machine learning—transform your skills and projects with MLVR - Machine Learning via Rust’s innovative and comprehensive approach! 📚🌟 Start your journey towards mastering machine learning with Rust today and unlock new possibilities in this rapidly evolving field! 🏆 #MachineLearning #RustProgramming #MLVR #DataScience #AI #TechBooks #LearnRust #DeveloperSkills #SoftwareEngineering
Machine Learning via Rust
Author: Evan Pradipta Hardinatha
Publisher: RantAI
ISBN:
Category : Computers
Languages : en
Pages : 131
Book Description
Transform Machine Learning with Rust! 🤖🦀 Introducing MLVR - Machine Learning via Rust—the groundbreaking textbook that seamlessly blends the theoretical rigor of machine learning with the modern, high-performance capabilities of the Rust programming language! 🚀 Whether you're a student embarking on your machine learning journey or a professional looking to elevate your skills, MLVR is your comprehensive guide to mastering machine learning with Rust’s unparalleled strengths in performance, safety, and concurrency. ✨ Why Choose MLVR? 🔍 Comprehensive Coverage: From classical models like linear regression and neural networks to cutting-edge techniques such as AutoML and reinforcement learning, MLVR covers it all. 💡 Modern Integration: Leverage Rust’s unique ownership model and advanced type system to implement machine learning algorithms with unmatched safety and efficiency. 🛠️ Practical Implementation: Benefit from step-by-step coding guides, clear explanations, and real-world applications that bridge the gap between theory and practice. 🤖 Performance & Safety: Harness Rust’s core strengths to build machine learning models that are not only fast but also memory-safe and concurrent. Unlock the Benefits: ✅ High Performance: Optimize machine learning models to run at peak speed using Rust’s low-level control without compromising on safety. ✅ Scalable Solutions: Implement scalable and efficient machine learning systems that can handle large datasets and complex computations. ✅ Robust Deployments: Deploy machine learning models with confidence, knowing that Rust’s strong type system and ownership model prevent common programming errors. What You'll Explore: Foundations of Machine Learning: Understand the essential concepts and algorithms that form the backbone of machine learning. Advanced Techniques: Dive into sophisticated methods like AutoML and reinforcement learning, tailored for Rust’s ecosystem. Real-World Applications: Apply your knowledge to real-world projects, showcasing the practical power of Rust in machine learning. Optimization Strategies: Learn how to fine-tune your models for maximum performance and efficiency using Rust’s capabilities. Perfect For: Students seeking a solid foundation in machine learning with a modern programming language. Professionals aiming to enhance their machine learning expertise and optimize their Rust projects. Developers of all levels who want to implement, optimize, and deploy machine learning models effectively using Rust. Embrace the future of machine learning—transform your skills and projects with MLVR - Machine Learning via Rust’s innovative and comprehensive approach! 📚🌟 Start your journey towards mastering machine learning with Rust today and unlock new possibilities in this rapidly evolving field! 🏆 #MachineLearning #RustProgramming #MLVR #DataScience #AI #TechBooks #LearnRust #DeveloperSkills #SoftwareEngineering
Publisher: RantAI
ISBN:
Category : Computers
Languages : en
Pages : 131
Book Description
Transform Machine Learning with Rust! 🤖🦀 Introducing MLVR - Machine Learning via Rust—the groundbreaking textbook that seamlessly blends the theoretical rigor of machine learning with the modern, high-performance capabilities of the Rust programming language! 🚀 Whether you're a student embarking on your machine learning journey or a professional looking to elevate your skills, MLVR is your comprehensive guide to mastering machine learning with Rust’s unparalleled strengths in performance, safety, and concurrency. ✨ Why Choose MLVR? 🔍 Comprehensive Coverage: From classical models like linear regression and neural networks to cutting-edge techniques such as AutoML and reinforcement learning, MLVR covers it all. 💡 Modern Integration: Leverage Rust’s unique ownership model and advanced type system to implement machine learning algorithms with unmatched safety and efficiency. 🛠️ Practical Implementation: Benefit from step-by-step coding guides, clear explanations, and real-world applications that bridge the gap between theory and practice. 🤖 Performance & Safety: Harness Rust’s core strengths to build machine learning models that are not only fast but also memory-safe and concurrent. Unlock the Benefits: ✅ High Performance: Optimize machine learning models to run at peak speed using Rust’s low-level control without compromising on safety. ✅ Scalable Solutions: Implement scalable and efficient machine learning systems that can handle large datasets and complex computations. ✅ Robust Deployments: Deploy machine learning models with confidence, knowing that Rust’s strong type system and ownership model prevent common programming errors. What You'll Explore: Foundations of Machine Learning: Understand the essential concepts and algorithms that form the backbone of machine learning. Advanced Techniques: Dive into sophisticated methods like AutoML and reinforcement learning, tailored for Rust’s ecosystem. Real-World Applications: Apply your knowledge to real-world projects, showcasing the practical power of Rust in machine learning. Optimization Strategies: Learn how to fine-tune your models for maximum performance and efficiency using Rust’s capabilities. Perfect For: Students seeking a solid foundation in machine learning with a modern programming language. Professionals aiming to enhance their machine learning expertise and optimize their Rust projects. Developers of all levels who want to implement, optimize, and deploy machine learning models effectively using Rust. Embrace the future of machine learning—transform your skills and projects with MLVR - Machine Learning via Rust’s innovative and comprehensive approach! 📚🌟 Start your journey towards mastering machine learning with Rust today and unlock new possibilities in this rapidly evolving field! 🏆 #MachineLearning #RustProgramming #MLVR #DataScience #AI #TechBooks #LearnRust #DeveloperSkills #SoftwareEngineering
Practical Machine Learning with Rust
Author: Joydeep Bhattacharjee
Publisher: Apress
ISBN: 1484251210
Category : Computers
Languages : en
Pages : 362
Book Description
Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud. After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will Learn Write machine learning algorithms in RustUse Rust libraries for different tasks in machine learningCreate concise Rust packages for your machine learning applicationsImplement NLP and computer vision in RustDeploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust.
Publisher: Apress
ISBN: 1484251210
Category : Computers
Languages : en
Pages : 362
Book Description
Explore machine learning in Rust and learn about the intricacies of creating machine learning applications. This book begins by covering the important concepts of machine learning such as supervised, unsupervised, and reinforcement learning, and the basics of Rust. Further, you’ll dive into the more specific fields of machine learning, such as computer vision and natural language processing, and look at the Rust libraries that help create applications for those domains. We will also look at how to deploy these applications either on site or over the cloud. After reading Practical Machine Learning with Rust, you will have a solid understanding of creating high computation libraries using Rust. Armed with the knowledge of this amazing language, you will be able to create applications that are more performant, memory safe, and less resource heavy. What You Will Learn Write machine learning algorithms in RustUse Rust libraries for different tasks in machine learningCreate concise Rust packages for your machine learning applicationsImplement NLP and computer vision in RustDeploy your code in the cloud and on bare metal servers Who This Book Is For Machine learning engineers and software engineers interested in building machine learning applications in Rust.
Python Machine Learning
Author: Sebastian Raschka
Publisher: Packt Publishing Ltd
ISBN: 1783555149
Category : Computers
Languages : en
Pages : 455
Book Description
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
Publisher: Packt Publishing Ltd
ISBN: 1783555149
Category : Computers
Languages : en
Pages : 455
Book Description
Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
The Rust Programming Language (Covers Rust 2018)
Author: Steve Klabnik
Publisher: No Starch Press
ISBN: 1718500459
Category : Computers
Languages : en
Pages : 561
Book Description
The official book on the Rust programming language, written by the Rust development team at the Mozilla Foundation, fully updated for Rust 2018. The Rust Programming Language is the official book on Rust: an open source systems programming language that helps you write faster, more reliable software. Rust offers control over low-level details (such as memory usage) in combination with high-level ergonomics, eliminating the hassle traditionally associated with low-level languages. The authors of The Rust Programming Language, members of the Rust Core Team, share their knowledge and experience to show you how to take full advantage of Rust's features--from installation to creating robust and scalable programs. You'll begin with basics like creating functions, choosing data types, and binding variables and then move on to more advanced concepts, such as: Ownership and borrowing, lifetimes, and traits Using Rust's memory safety guarantees to build fast, safe programs Testing, error handling, and effective refactoring Generics, smart pointers, multithreading, trait objects, and advanced pattern matching Using Cargo, Rust's built-in package manager, to build, test, and document your code and manage dependencies How best to use Rust's advanced compiler with compiler-led programming techniques You'll find plenty of code examples throughout the book, as well as three chapters dedicated to building complete projects to test your learning: a number guessing game, a Rust implementation of a command line tool, and a multithreaded server. New to this edition: An extended section on Rust macros, an expanded chapter on modules, and appendixes on Rust development tools and editions.
Publisher: No Starch Press
ISBN: 1718500459
Category : Computers
Languages : en
Pages : 561
Book Description
The official book on the Rust programming language, written by the Rust development team at the Mozilla Foundation, fully updated for Rust 2018. The Rust Programming Language is the official book on Rust: an open source systems programming language that helps you write faster, more reliable software. Rust offers control over low-level details (such as memory usage) in combination with high-level ergonomics, eliminating the hassle traditionally associated with low-level languages. The authors of The Rust Programming Language, members of the Rust Core Team, share their knowledge and experience to show you how to take full advantage of Rust's features--from installation to creating robust and scalable programs. You'll begin with basics like creating functions, choosing data types, and binding variables and then move on to more advanced concepts, such as: Ownership and borrowing, lifetimes, and traits Using Rust's memory safety guarantees to build fast, safe programs Testing, error handling, and effective refactoring Generics, smart pointers, multithreading, trait objects, and advanced pattern matching Using Cargo, Rust's built-in package manager, to build, test, and document your code and manage dependencies How best to use Rust's advanced compiler with compiler-led programming techniques You'll find plenty of code examples throughout the book, as well as three chapters dedicated to building complete projects to test your learning: a number guessing game, a Rust implementation of a command line tool, and a multithreaded server. New to this edition: An extended section on Rust macros, an expanded chapter on modules, and appendixes on Rust development tools and editions.
Hands-On Machine Learning with R
Author: Brad Boehmke
Publisher: CRC Press
ISBN: 1000730433
Category : Business & Economics
Languages : en
Pages : 373
Book Description
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Publisher: CRC Press
ISBN: 1000730433
Category : Business & Economics
Languages : en
Pages : 373
Book Description
Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Programming Rust
Author: Jim Blandy
Publisher: "O'Reilly Media, Inc."
ISBN: 1491927232
Category : Computers
Languages : en
Pages : 646
Book Description
Rust is a new systems programming language that combines the performance and low-level control of C and C++ with memory safety and thread safety. Rust’s modern, flexible types ensure your program is free of null pointer dereferences, double frees, dangling pointers, and similar bugs, all at compile time, without runtime overhead. In multi-threaded code, Rust catches data races at compile time, making concurrency much easier to use. Written by two experienced systems programmers, this book explains how Rust manages to bridge the gap between performance and safety, and how you can take advantage of it. Topics include: How Rust represents values in memory (with diagrams) Complete explanations of ownership, moves, borrows, and lifetimes Cargo, rustdoc, unit tests, and how to publish your code on crates.io, Rust’s public package repository High-level features like generic code, closures, collections, and iterators that make Rust productive and flexible Concurrency in Rust: threads, mutexes, channels, and atomics, all much safer to use than in C or C++ Unsafe code, and how to preserve the integrity of ordinary code that uses it Extended examples illustrating how pieces of the language fit together
Publisher: "O'Reilly Media, Inc."
ISBN: 1491927232
Category : Computers
Languages : en
Pages : 646
Book Description
Rust is a new systems programming language that combines the performance and low-level control of C and C++ with memory safety and thread safety. Rust’s modern, flexible types ensure your program is free of null pointer dereferences, double frees, dangling pointers, and similar bugs, all at compile time, without runtime overhead. In multi-threaded code, Rust catches data races at compile time, making concurrency much easier to use. Written by two experienced systems programmers, this book explains how Rust manages to bridge the gap between performance and safety, and how you can take advantage of it. Topics include: How Rust represents values in memory (with diagrams) Complete explanations of ownership, moves, borrows, and lifetimes Cargo, rustdoc, unit tests, and how to publish your code on crates.io, Rust’s public package repository High-level features like generic code, closures, collections, and iterators that make Rust productive and flexible Concurrency in Rust: threads, mutexes, channels, and atomics, all much safer to use than in C or C++ Unsafe code, and how to preserve the integrity of ordinary code that uses it Extended examples illustrating how pieces of the language fit together
Grokking Deep Learning
Author: Andrew W. Trask
Publisher: Simon and Schuster
ISBN: 163835720X
Category : Computers
Languages : en
Pages : 475
Book Description
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide
Publisher: Simon and Schuster
ISBN: 163835720X
Category : Computers
Languages : en
Pages : 475
Book Description
Summary Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Deep learning, a branch of artificial intelligence, teaches computers to learn by using neural networks, technology inspired by the human brain. Online text translation, self-driving cars, personalized product recommendations, and virtual voice assistants are just a few of the exciting modern advancements possible thanks to deep learning. About the Book Grokking Deep Learning teaches you to build deep learning neural networks from scratch! In his engaging style, seasoned deep learning expert Andrew Trask shows you the science under the hood, so you grok for yourself every detail of training neural networks. Using only Python and its math-supporting library, NumPy, you'll train your own neural networks to see and understand images, translate text into different languages, and even write like Shakespeare! When you're done, you'll be fully prepared to move on to mastering deep learning frameworks. What's inside The science behind deep learning Building and training your own neural networks Privacy concepts, including federated learning Tips for continuing your pursuit of deep learning About the Reader For readers with high school-level math and intermediate programming skills. About the Author Andrew Trask is a PhD student at Oxford University and a research scientist at DeepMind. Previously, Andrew was a researcher and analytics product manager at Digital Reasoning, where he trained the world's largest artificial neural network and helped guide the analytics roadmap for the Synthesys cognitive computing platform. Table of Contents Introducing deep learning: why you should learn it Fundamental concepts: how do machines learn? Introduction to neural prediction: forward propagation Introduction to neural learning: gradient descent Learning multiple weights at a time: generalizing gradient descent Building your first deep neural network: introduction to backpropagation How to picture neural networks: in your head and on paper Learning signal and ignoring noise:introduction to regularization and batching Modeling probabilities and nonlinearities: activation functions Neural learning about edges and corners: intro to convolutional neural networks Neural networks that understand language: king - man + woman == ? Neural networks that write like Shakespeare: recurrent layers for variable-length data Introducing automatic optimization: let's build a deep learning framework Learning to write like Shakespeare: long short-term memory Deep learning on unseen data: introducing federated learning Where to go from here: a brief guide
Rust in Action
Author: Tim McNamara
Publisher: Simon and Schuster
ISBN: 163835622X
Category : Computers
Languages : en
Pages : 454
Book Description
"This well-written book will help you make the most of what Rust has to offer." - Ramnivas Laddad, author of AspectJ in Action Rust in Action is a hands-on guide to systems programming with Rust. Written for inquisitive programmers, it presents real-world use cases that go far beyond syntax and structure. Summary Rust in Action introduces the Rust programming language by exploring numerous systems programming concepts and techniques. You'll be learning Rust by delving into how computers work under the hood. You'll find yourself playing with persistent storage, memory, networking and even tinkering with CPU instructions. The book takes you through using Rust to extend other applications and teaches you tricks to write blindingly fast code. You'll also discover parallel and concurrent programming. Filled to the brim with real-life use cases and scenarios, you'll go beyond the Rust syntax and see what Rust has to offer in real-world use cases. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Rust is the perfect language for systems programming. It delivers the low-level power of C along with rock-solid safety features that let you code fearlessly. Ideal for applications requiring concurrency, Rust programs are compact, readable, and blazingly fast. Best of all, Rust’s famously smart compiler helps you avoid even subtle coding errors. About the book Rust in Action is a hands-on guide to systems programming with Rust. Written for inquisitive programmers, it presents real-world use cases that go far beyond syntax and structure. You’ll explore Rust implementations for file manipulation, networking, and kernel-level programming and discover awesome techniques for parallelism and concurrency. Along the way, you’ll master Rust’s unique borrow checker model for memory management without a garbage collector. What's inside Elementary to advanced Rust programming Practical examples from systems programming Command-line, graphical and networked applications About the reader For intermediate programmers. No previous experience with Rust required. About the author Tim McNamara uses Rust to build data processing pipelines and generative art. He is an expert in natural language processing and data engineering. Table of Contents 1 Introducing Rust PART 1 RUST LANGUAGE DISTINCTIVES 2 Language foundations 3 Compound data types 4 Lifetimes, ownership, and borrowing PART 2 DEMYSTIFYING SYSTEMS PROGRAMMING 5 Data in depth 6 Memory 7 Files and storage 8 Networking 9 Time and timekeeping 10 Processes, threads, and containers 11 Kernel 12 Signals, interrupts, and exceptions
Publisher: Simon and Schuster
ISBN: 163835622X
Category : Computers
Languages : en
Pages : 454
Book Description
"This well-written book will help you make the most of what Rust has to offer." - Ramnivas Laddad, author of AspectJ in Action Rust in Action is a hands-on guide to systems programming with Rust. Written for inquisitive programmers, it presents real-world use cases that go far beyond syntax and structure. Summary Rust in Action introduces the Rust programming language by exploring numerous systems programming concepts and techniques. You'll be learning Rust by delving into how computers work under the hood. You'll find yourself playing with persistent storage, memory, networking and even tinkering with CPU instructions. The book takes you through using Rust to extend other applications and teaches you tricks to write blindingly fast code. You'll also discover parallel and concurrent programming. Filled to the brim with real-life use cases and scenarios, you'll go beyond the Rust syntax and see what Rust has to offer in real-world use cases. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Rust is the perfect language for systems programming. It delivers the low-level power of C along with rock-solid safety features that let you code fearlessly. Ideal for applications requiring concurrency, Rust programs are compact, readable, and blazingly fast. Best of all, Rust’s famously smart compiler helps you avoid even subtle coding errors. About the book Rust in Action is a hands-on guide to systems programming with Rust. Written for inquisitive programmers, it presents real-world use cases that go far beyond syntax and structure. You’ll explore Rust implementations for file manipulation, networking, and kernel-level programming and discover awesome techniques for parallelism and concurrency. Along the way, you’ll master Rust’s unique borrow checker model for memory management without a garbage collector. What's inside Elementary to advanced Rust programming Practical examples from systems programming Command-line, graphical and networked applications About the reader For intermediate programmers. No previous experience with Rust required. About the author Tim McNamara uses Rust to build data processing pipelines and generative art. He is an expert in natural language processing and data engineering. Table of Contents 1 Introducing Rust PART 1 RUST LANGUAGE DISTINCTIVES 2 Language foundations 3 Compound data types 4 Lifetimes, ownership, and borrowing PART 2 DEMYSTIFYING SYSTEMS PROGRAMMING 5 Data in depth 6 Memory 7 Files and storage 8 Networking 9 Time and timekeeping 10 Processes, threads, and containers 11 Kernel 12 Signals, interrupts, and exceptions
Reinforcement Learning, second edition
Author: Richard S. Sutton
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Publisher: MIT Press
ISBN: 0262352702
Category : Computers
Languages : en
Pages : 549
Book Description
The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.
Research Anthology on Machine Learning Techniques, Methods, and Applications
Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1668462923
Category : Computers
Languages : en
Pages : 1516
Book Description
Machine learning continues to have myriad applications across industries and fields. To ensure this technology is utilized appropriately and to its full potential, organizations must better understand exactly how and where it can be adapted. Further study on the applications of machine learning is required to discover its best practices, challenges, and strategies. The Research Anthology on Machine Learning Techniques, Methods, and Applications provides a thorough consideration of the innovative and emerging research within the area of machine learning. The book discusses how the technology has been used in the past as well as potential ways it can be used in the future to ensure industries continue to develop and grow. Covering a range of topics such as artificial intelligence, deep learning, cybersecurity, and robotics, this major reference work is ideal for computer scientists, managers, researchers, scholars, practitioners, academicians, instructors, and students.
Publisher: IGI Global
ISBN: 1668462923
Category : Computers
Languages : en
Pages : 1516
Book Description
Machine learning continues to have myriad applications across industries and fields. To ensure this technology is utilized appropriately and to its full potential, organizations must better understand exactly how and where it can be adapted. Further study on the applications of machine learning is required to discover its best practices, challenges, and strategies. The Research Anthology on Machine Learning Techniques, Methods, and Applications provides a thorough consideration of the innovative and emerging research within the area of machine learning. The book discusses how the technology has been used in the past as well as potential ways it can be used in the future to ensure industries continue to develop and grow. Covering a range of topics such as artificial intelligence, deep learning, cybersecurity, and robotics, this major reference work is ideal for computer scientists, managers, researchers, scholars, practitioners, academicians, instructors, and students.