Machine Learning Techniques for Gait Biometric Recognition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Machine Learning Techniques for Gait Biometric Recognition PDF full book. Access full book title Machine Learning Techniques for Gait Biometric Recognition by James Eric Mason. Download full books in PDF and EPUB format.

Machine Learning Techniques for Gait Biometric Recognition

Machine Learning Techniques for Gait Biometric Recognition PDF Author: James Eric Mason
Publisher: Springer
ISBN: 3319290886
Category : Technology & Engineering
Languages : en
Pages : 247

Book Description
This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition · provides detailed discussions of key research challenges and open research issues in gait biometrics recognition · compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear

Machine Learning Techniques for Gait Biometric Recognition

Machine Learning Techniques for Gait Biometric Recognition PDF Author: James Eric Mason
Publisher: Springer
ISBN: 3319290886
Category : Technology & Engineering
Languages : en
Pages : 247

Book Description
This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of footwear and stepping speed on footstep GRF-based person recognition · provides detailed discussions of key research challenges and open research issues in gait biometrics recognition · compares biometrics systems trained and tested with the same footwear against those trained and tested with different footwear

Advanced Machine Learning Technologies and Applications

Advanced Machine Learning Technologies and Applications PDF Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 9811533830
Category : Technology & Engineering
Languages : en
Pages : 737

Book Description
This book presents the refereed proceedings of the 5th International Conference on Advanced Machine Learning Technologies and Applications (AMLTA 2020), held at Manipal University Jaipur, India, on February 13 – 15, 2020, and organized in collaboration with the Scientific Research Group in Egypt (SRGE). The papers cover current research in machine learning, big data, Internet of Things, biomedical engineering, fuzzy logic and security, as well as intelligence swarms and optimization.

Advances in Machine Learning and Computational Intelligence

Advances in Machine Learning and Computational Intelligence PDF Author: Srikanta Patnaik
Publisher: Springer Nature
ISBN: 9811552436
Category : Technology & Engineering
Languages : en
Pages : 853

Book Description
This book gathers selected high-quality papers presented at the International Conference on Machine Learning and Computational Intelligence (ICMLCI-2019), jointly organized by Kunming University of Science and Technology and the Interscience Research Network, Bhubaneswar, India, from April 6 to 7, 2019. Addressing virtually all aspects of intelligent systems, soft computing and machine learning, the topics covered include: prediction; data mining; information retrieval; game playing; robotics; learning methods; pattern visualization; automated knowledge acquisition; fuzzy, stochastic and probabilistic computing; neural computing; big data; social networks and applications of soft computing in various areas.

Advanced Studies in Biometrics

Advanced Studies in Biometrics PDF Author: Massimo Tistarelli
Publisher: Springer
ISBN: 3540286381
Category : Computers
Languages : en
Pages : 166

Book Description
Automatic person authentication, the identification and verification of an individual as such, has increasingly been acknowledged as a significant aspect of various security applications. Various recognition and identification systems have been based on biometrics utilizing biometric features such as fingerprint, face, retina scans, iris patterns, hand geometry, DNA traces, gait, and others. This book originates from an international summer school on biometrics, held in Alghero, Italy, in June 2003. The seven revised tutorial lectures by leading researchers introduce the reader to biometrics-based person authentication, fingerprint recognition, gait recognition, various aspects of face recognition and face detection, topologies for biometric recognition, and hand detection. Also included are the four best selected student papers, all dealing with face recognition.

Deep Learning for Biometrics

Deep Learning for Biometrics PDF Author: Bir Bhanu
Publisher: Springer
ISBN: 9783319871288
Category : Computers
Languages : en
Pages : 0

Book Description
This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined. Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches for gesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories. Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.

AI and Deep Learning in Biometric Security

AI and Deep Learning in Biometric Security PDF Author: Gaurav Jaswal
Publisher: CRC Press
ISBN: 1000291669
Category : Technology & Engineering
Languages : en
Pages : 409

Book Description
This book provides an in-depth overview of artificial intelligence and deep learning approaches with case studies to solve problems associated with biometric security such as authentication, indexing, template protection, spoofing attack detection, ROI detection, gender classification etc. This text highlights a showcase of cutting-edge research on the use of convolution neural networks, autoencoders, recurrent convolutional neural networks in face, hand, iris, gait, fingerprint, vein, and medical biometric traits. It also provides a step-by-step guide to understanding deep learning concepts for biometrics authentication approaches and presents an analysis of biometric images under various environmental conditions. This book is sure to catch the attention of scholars, researchers, practitioners, and technology aspirants who are willing to research in the field of AI and biometric security.

Deep Learning: Algorithms and Applications

Deep Learning: Algorithms and Applications PDF Author: Witold Pedrycz
Publisher: Springer Nature
ISBN: 3030317609
Category : Technology & Engineering
Languages : en
Pages : 368

Book Description
This book presents a wealth of deep-learning algorithms and demonstrates their design process. It also highlights the need for a prudent alignment with the essential characteristics of the nature of learning encountered in the practical problems being tackled. Intended for readers interested in acquiring practical knowledge of analysis, design, and deployment of deep learning solutions to real-world problems, it covers a wide range of the paradigm’s algorithms and their applications in diverse areas including imaging, seismic tomography, smart grids, surveillance and security, and health care, among others. Featuring systematic and comprehensive discussions on the development processes, their evaluation, and relevance, the book offers insights into fundamental design strategies for algorithms of deep learning.

Human Recognition in Unconstrained Environments

Human Recognition in Unconstrained Environments PDF Author: Maria De Marsico
Publisher: Academic Press
ISBN: 0081007124
Category : Computers
Languages : en
Pages : 250

Book Description
Human Recognition in Unconstrained Environments provides a unique picture of the complete ‘in-the-wild’ biometric recognition processing chain; from data acquisition through to detection, segmentation, encoding, and matching reactions against security incidents. Coverage includes: Data hardware architecture fundamentals Background subtraction of humans in outdoor scenes Camera synchronization Biometric traits: Real-time detection and data segmentation Biometric traits: Feature encoding / matching Fusion at different levels Reaction against security incidents Ethical issues in non-cooperative biometric recognition in public spaces With this book readers will learn how to: Use computer vision, pattern recognition and machine learning methods for biometric recognition in real-world, real-time settings, especially those related to forensics and security Choose the most suited biometric traits and recognition methods for uncontrolled settings Evaluate the performance of a biometric system on real world data Presents a complete picture of the biometric recognition processing chain, ranging from data acquisition to the reaction procedures against security incidents Provides specific requirements and issues behind each typical phase of the development of a robust biometric recognition system Includes a contextualization of the ethical/privacy issues behind the development of a covert recognition system which can be used for forensics and security activities

Biometrics

Biometrics PDF Author: Anil K. Jain
Publisher: Springer Science & Business Media
ISBN: 0306470446
Category : Computers
Languages : en
Pages : 408

Book Description
Biometrics: Personal Identification in Networked Society is a comprehensive and accessible source of state-of-the-art information on all existing and emerging biometrics: the science of automatically identifying individuals based on their physiological or behavior characteristics. In particular, the book covers: *General principles and ideas of designing biometric-based systems and their underlying tradeoffs *Identification of important issues in the evaluation of biometrics-based systems *Integration of biometric cues, and the integration of biometrics with other existing technologies *Assessment of the capabilities and limitations of different biometrics *The comprehensive examination of biometric methods in commercial use and in research development *Exploration of some of the numerous privacy and security implications of biometrics. Also included are chapters on face and eye identification, speaker recognition, networking, and other timely technology-related issues. All chapters are written by leading internationally recognized experts from academia and industry. Biometrics: Personal Identification in Networked Society is an invaluable work for scientists, engineers, application developers, systems integrators, and others working in biometrics.

AI Based Advancements in Biometrics and its Applications

AI Based Advancements in Biometrics and its Applications PDF Author: Balasubramaniam S
Publisher: CRC Press
ISBN: 1040222617
Category : Computers
Languages : en
Pages : 274

Book Description
This book delves into the history of biometrics, the different systems that have been developed to date, problems that have arisen from these systems, the necessity of AI-based biometrics systems, different AI techniques developed to date (including machine learning, deep learning, natural language processing, and pattern recognition), their potential uses and applications, security and privacy issues in AI-based Biometric systems, current trends in AI-based biometrics, and presents case studies of AI-based biometrics.