Author: Marius Kurz
Publisher:
ISBN: 9783843954518
Category :
Languages : en
Pages : 0
Book Description
The reliable prediction of turbulent flows is of crucial importance since turbulence is prevalent in the majority of flows found in science and engineering. Turbulence is a multi-scale phenomenon, for which flow features can span several orders of magnitude in size. This results in enormous resolution requirements in numerical simulations of turbulent flow. The framework of large eddy simulation relaxes these resolution demands by resolving only the largest, most energetic features of the flow and approximating the dynamics of the smaller, unresolved scales with turbulence models. The goal of this thesis is to leverage the recent advances in machine learning methods to formulate data-driven modeling strategies for implicitly filtered large eddy simulation. To this end, two modeling strategies are devised based on the supervised and the reinforcement learning paradigms. First, artificial neural networks are trained using supervised learning to recover the unknown closure terms from the filtered flow field. It is demonstrated that recurrent neural networks can predict the unknown closure terms with excellent accuracy. The second modeling strategy is based on the reinforcement learning paradigm. For this, Relexi is introduced as a novel reinforcement learning framework that allows to employ legacy flow solvers as training environments at scale. With Relexi, artificial neural networks are trained within forced homogeneous isotropic turbulence to adapt the parameters of traditional turbulence models dynamically in space and time. The trained models provide accurate and stable simulations and generalize well to other resolutions and higher Reynolds numbers. It is demonstrated within this thesis that machine learning methods can be applied to derive data-driven turbulence models for implicitly filtered large eddy simulation and that these models can be trained and incorporated efficiently into practical simulations on high-performance computing systems.
Machine Learning Methods for Modeling Turbulence in Large Eddy Simulations
Author: Marius Kurz
Publisher:
ISBN: 9783843954518
Category :
Languages : en
Pages : 0
Book Description
The reliable prediction of turbulent flows is of crucial importance since turbulence is prevalent in the majority of flows found in science and engineering. Turbulence is a multi-scale phenomenon, for which flow features can span several orders of magnitude in size. This results in enormous resolution requirements in numerical simulations of turbulent flow. The framework of large eddy simulation relaxes these resolution demands by resolving only the largest, most energetic features of the flow and approximating the dynamics of the smaller, unresolved scales with turbulence models. The goal of this thesis is to leverage the recent advances in machine learning methods to formulate data-driven modeling strategies for implicitly filtered large eddy simulation. To this end, two modeling strategies are devised based on the supervised and the reinforcement learning paradigms. First, artificial neural networks are trained using supervised learning to recover the unknown closure terms from the filtered flow field. It is demonstrated that recurrent neural networks can predict the unknown closure terms with excellent accuracy. The second modeling strategy is based on the reinforcement learning paradigm. For this, Relexi is introduced as a novel reinforcement learning framework that allows to employ legacy flow solvers as training environments at scale. With Relexi, artificial neural networks are trained within forced homogeneous isotropic turbulence to adapt the parameters of traditional turbulence models dynamically in space and time. The trained models provide accurate and stable simulations and generalize well to other resolutions and higher Reynolds numbers. It is demonstrated within this thesis that machine learning methods can be applied to derive data-driven turbulence models for implicitly filtered large eddy simulation and that these models can be trained and incorporated efficiently into practical simulations on high-performance computing systems.
Publisher:
ISBN: 9783843954518
Category :
Languages : en
Pages : 0
Book Description
The reliable prediction of turbulent flows is of crucial importance since turbulence is prevalent in the majority of flows found in science and engineering. Turbulence is a multi-scale phenomenon, for which flow features can span several orders of magnitude in size. This results in enormous resolution requirements in numerical simulations of turbulent flow. The framework of large eddy simulation relaxes these resolution demands by resolving only the largest, most energetic features of the flow and approximating the dynamics of the smaller, unresolved scales with turbulence models. The goal of this thesis is to leverage the recent advances in machine learning methods to formulate data-driven modeling strategies for implicitly filtered large eddy simulation. To this end, two modeling strategies are devised based on the supervised and the reinforcement learning paradigms. First, artificial neural networks are trained using supervised learning to recover the unknown closure terms from the filtered flow field. It is demonstrated that recurrent neural networks can predict the unknown closure terms with excellent accuracy. The second modeling strategy is based on the reinforcement learning paradigm. For this, Relexi is introduced as a novel reinforcement learning framework that allows to employ legacy flow solvers as training environments at scale. With Relexi, artificial neural networks are trained within forced homogeneous isotropic turbulence to adapt the parameters of traditional turbulence models dynamically in space and time. The trained models provide accurate and stable simulations and generalize well to other resolutions and higher Reynolds numbers. It is demonstrated within this thesis that machine learning methods can be applied to derive data-driven turbulence models for implicitly filtered large eddy simulation and that these models can be trained and incorporated efficiently into practical simulations on high-performance computing systems.
Turbulent Shear Flows I
Author: F. Durst
Publisher: Springer Science & Business Media
ISBN: 3642463959
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
The present book contains papers that have been selected from contributions to the First International Symposium on Turbulent Shear Flows which was held from the 18th to 20th April 1977 at The Pennsylvania State University, University Park, Pennsylvania, USA. Attend ees from close to 20 countries presented over 100 contributions at this meeting in which many aspects of the current activities in turbulence research were covered. Five topics received particular attention at the Symposium: Free Flows Wall Flows Recirculating Flows Developments in Reynolds Stress Closures New Directions in Modeling This is also reflected in the five chapters of this book with contributions from research workers from different countries. Each chapter covers the most valuable contributions of the conference to the particular chapter topic. Of course, there were many additional good con tributions to each subject at the meeting but the limitation imposed on the length of this volume required that a selection be made. The realization of the First International Symposium on Turbulent Shear Flows was p- sible by the general support of: U. S. Army Research Office U. S. Navy Research Office Continuing Education Center of The Pennsylvania State University The conference organization was carried out by the organizing committee consisting of: F. Durst, Universitat Karlsruhe, Karlsruhe, Fed. Rep. of Germany V. W. Goldschmidt, Purdue University, West Lafayette, Ind. , USA B. E. Launder, University of California, Davis, Calif. , USA F. W. Schmidt, Pennsylvania State University, University Park, Penna.
Publisher: Springer Science & Business Media
ISBN: 3642463959
Category : Technology & Engineering
Languages : en
Pages : 415
Book Description
The present book contains papers that have been selected from contributions to the First International Symposium on Turbulent Shear Flows which was held from the 18th to 20th April 1977 at The Pennsylvania State University, University Park, Pennsylvania, USA. Attend ees from close to 20 countries presented over 100 contributions at this meeting in which many aspects of the current activities in turbulence research were covered. Five topics received particular attention at the Symposium: Free Flows Wall Flows Recirculating Flows Developments in Reynolds Stress Closures New Directions in Modeling This is also reflected in the five chapters of this book with contributions from research workers from different countries. Each chapter covers the most valuable contributions of the conference to the particular chapter topic. Of course, there were many additional good con tributions to each subject at the meeting but the limitation imposed on the length of this volume required that a selection be made. The realization of the First International Symposium on Turbulent Shear Flows was p- sible by the general support of: U. S. Army Research Office U. S. Navy Research Office Continuing Education Center of The Pennsylvania State University The conference organization was carried out by the organizing committee consisting of: F. Durst, Universitat Karlsruhe, Karlsruhe, Fed. Rep. of Germany V. W. Goldschmidt, Purdue University, West Lafayette, Ind. , USA B. E. Launder, University of California, Davis, Calif. , USA F. W. Schmidt, Pennsylvania State University, University Park, Penna.
Large Eddy Simulation for Compressible Flows
Author: Eric Garnier
Publisher: Springer Science & Business Media
ISBN: 9048128196
Category : Science
Languages : en
Pages : 280
Book Description
This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.
Publisher: Springer Science & Business Media
ISBN: 9048128196
Category : Science
Languages : en
Pages : 280
Book Description
This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.
Turbulent Shear Flows 8
Author: Franz Durst
Publisher: Springer Science & Business Media
ISBN: 3642776744
Category : Science
Languages : en
Pages : 419
Book Description
This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.
Publisher: Springer Science & Business Media
ISBN: 3642776744
Category : Science
Languages : en
Pages : 419
Book Description
This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.
The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains
Author: Rose McCallen
Publisher: Springer Science & Business Media
ISBN: 9783540220886
Category : Computers
Languages : en
Pages : 590
Book Description
This book includes the carefully edited contributions to the United Engineering Foundation Conference: The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held in Monterey, California from December 2-6, 2002. This conference brought together 90 leading engineering researchers discussing the aerodynamic drag of heavy vehicles. The book topics include a comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry are presented as well, along with their use in evaluating drag reduction devices.
Publisher: Springer Science & Business Media
ISBN: 9783540220886
Category : Computers
Languages : en
Pages : 590
Book Description
This book includes the carefully edited contributions to the United Engineering Foundation Conference: The Aerodynamics of Heavy Vehicles: Trucks, Buses and Trains held in Monterey, California from December 2-6, 2002. This conference brought together 90 leading engineering researchers discussing the aerodynamic drag of heavy vehicles. The book topics include a comparison of computational fluid dynamics calculations using both steady and unsteady Reynolds-averaged Navier-Stokes, large-eddy simulation, and hybrid turbulence models and experimental data obtained from wind tunnel experiments. Advanced experimental techniques including three-dimensional particle image velocimetry are presented as well, along with their use in evaluating drag reduction devices.
Progress in Hybrid RANS-LES Modelling
Author: Song Fu
Publisher: Springer Science & Business Media
ISBN: 3642318185
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
The present book contains contributions presented at the Fourth Symposium on Hybrid RANS-LES Methods, held in Beijing, China, 28-30 September 2011, being a continuation of symposia taking place in Stockholm (Sweden, 2005), in Corfu (Greece, 2007), and Gdansk (Poland, 2009). The contributions to the last two symposia were published as NNFM, Vol. 97 and Vol. 111. At the Beijing symposium, along with seven invited keynotes, another 46 papers (plus 5 posters) were presented addressing topics on Novel turbulence-resolving simulation and modelling, Improved hybrid RANS-LES methods, Comparative studies of difference modelling methods, Modelling-related numerical issues and Industrial applications.. The present book reflects recent activities and new progress made in the development and applications of hybrid RANS-LES methods in general.
Publisher: Springer Science & Business Media
ISBN: 3642318185
Category : Technology & Engineering
Languages : en
Pages : 508
Book Description
The present book contains contributions presented at the Fourth Symposium on Hybrid RANS-LES Methods, held in Beijing, China, 28-30 September 2011, being a continuation of symposia taking place in Stockholm (Sweden, 2005), in Corfu (Greece, 2007), and Gdansk (Poland, 2009). The contributions to the last two symposia were published as NNFM, Vol. 97 and Vol. 111. At the Beijing symposium, along with seven invited keynotes, another 46 papers (plus 5 posters) were presented addressing topics on Novel turbulence-resolving simulation and modelling, Improved hybrid RANS-LES methods, Comparative studies of difference modelling methods, Modelling-related numerical issues and Industrial applications.. The present book reflects recent activities and new progress made in the development and applications of hybrid RANS-LES methods in general.
Mathematics of Large Eddy Simulation of Turbulent Flows
Author: Luigi Carlo Berselli
Publisher: Springer Science & Business Media
ISBN: 9783540263166
Category : Computers
Languages : en
Pages : 378
Book Description
The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field
Publisher: Springer Science & Business Media
ISBN: 9783540263166
Category : Computers
Languages : en
Pages : 378
Book Description
The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field
Direct and Large Eddy Simulation XIII
Author: Cristian Marchioli
Publisher: Springer Nature
ISBN: 3031470281
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
This book covers the diverse and cutting-edge research presented at the 13th ERCOFTAC Workshop on Direct and Large Eddy Simulation. The first section of the book focuses on Aerodynamics/Aeroacoustics, comprising eight papers that delve into the intricate relationship between fluid flow and aerodynamic performance. The second section explores the dynamics of Bluff/Moving Bodies through four insightful papers. Bubbly Flows, the subject of the third section, is examined through four papers. Moving on, the fourth section is dedicated to Combustion and Reactive Flows, presenting two papers that focus on the complex dynamics of combustion processes and the interactions between fluids and reactive species. Convection and Heat/Mass Transfer are the central themes of the fifth section, which includes three papers. These contributions explore the fundamental aspects of heat and mass transfer in fluid flows, addressing topics such as convective heat transfer, natural convection, and mass transport phenomena. The sixth section covers Data Assimilation and Uncertainty Quantification, featuring two papers that highlight the importance of incorporating data into fluid dynamic models and quantifying uncertainties associated with these models. The subsequent sections encompass a wide range of topics, including Environmental and Industrial Applications, Flow Separation, LES Fundamentals and Modelling, Multiphase Flows, and Numerics and Methodology. These sections collectively present a total of 23 papers that explore different facets of fluid dynamics, contributing to the advancement of the field and its practical applications.
Publisher: Springer Nature
ISBN: 3031470281
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
This book covers the diverse and cutting-edge research presented at the 13th ERCOFTAC Workshop on Direct and Large Eddy Simulation. The first section of the book focuses on Aerodynamics/Aeroacoustics, comprising eight papers that delve into the intricate relationship between fluid flow and aerodynamic performance. The second section explores the dynamics of Bluff/Moving Bodies through four insightful papers. Bubbly Flows, the subject of the third section, is examined through four papers. Moving on, the fourth section is dedicated to Combustion and Reactive Flows, presenting two papers that focus on the complex dynamics of combustion processes and the interactions between fluids and reactive species. Convection and Heat/Mass Transfer are the central themes of the fifth section, which includes three papers. These contributions explore the fundamental aspects of heat and mass transfer in fluid flows, addressing topics such as convective heat transfer, natural convection, and mass transport phenomena. The sixth section covers Data Assimilation and Uncertainty Quantification, featuring two papers that highlight the importance of incorporating data into fluid dynamic models and quantifying uncertainties associated with these models. The subsequent sections encompass a wide range of topics, including Environmental and Industrial Applications, Flow Separation, LES Fundamentals and Modelling, Multiphase Flows, and Numerics and Methodology. These sections collectively present a total of 23 papers that explore different facets of fluid dynamics, contributing to the advancement of the field and its practical applications.
Machine Learning in Modeling and Simulation
Author: Timon Rabczuk
Publisher: Springer Nature
ISBN: 3031366441
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Machine learning (ML) approaches have been extensively and successfully employed in various areas, like in economics, medical predictions, face recognition, credit card fraud detection, and spam filtering. There is clearly also the potential that ML techniques developed in Engineering and the Sciences will drastically increase the possibilities of analysis and accelerate the design to analysis time. With the use of ML techniques, coupled to conventional methods like finite element and digital twin technologies, new avenues of modeling and simulation can be opened but the potential of these ML techniques needs to still be fully harvested, with the methods developed and enhanced. The objective of this book is to provide an overview of ML in Engineering and the Sciences presenting fundamental theoretical ingredients with a focus on the next generation of computer modeling in Engineering and the Sciences in which the exciting aspects of machine learning are incorporated. The book is of value to any researcher and practitioner interested in research or applications of ML in the areas of scientific modeling and computer aided engineering.
Publisher: Springer Nature
ISBN: 3031366441
Category : Technology & Engineering
Languages : en
Pages : 456
Book Description
Machine learning (ML) approaches have been extensively and successfully employed in various areas, like in economics, medical predictions, face recognition, credit card fraud detection, and spam filtering. There is clearly also the potential that ML techniques developed in Engineering and the Sciences will drastically increase the possibilities of analysis and accelerate the design to analysis time. With the use of ML techniques, coupled to conventional methods like finite element and digital twin technologies, new avenues of modeling and simulation can be opened but the potential of these ML techniques needs to still be fully harvested, with the methods developed and enhanced. The objective of this book is to provide an overview of ML in Engineering and the Sciences presenting fundamental theoretical ingredients with a focus on the next generation of computer modeling in Engineering and the Sciences in which the exciting aspects of machine learning are incorporated. The book is of value to any researcher and practitioner interested in research or applications of ML in the areas of scientific modeling and computer aided engineering.
Turbulent Combustion Modeling
Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.