Machine Learning Made Easy PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Machine Learning Made Easy PDF full book. Access full book title Machine Learning Made Easy by Timeo Williams. Download full books in PDF and EPUB format.

Machine Learning Made Easy

Machine Learning Made Easy PDF Author: Timeo Williams
Publisher: Panel PR
ISBN:
Category : Computers
Languages : en
Pages : 11

Book Description
Discover the power of machine learning with ease! Whether you're a beginner or seasoned pro, "Machine Learning Made Easy" is your go-to guide. From basics to real-world applications, this book breaks down complex concepts into simple, actionable steps. Learn core principles, practical techniques, and apply them to diverse fields like healthcare and finance. With clear explanations and hands-on examples, you'll master machine learning effortlessly. Don't miss out—unlock the potential of machine learning today!

Machine Learning Made Easy with R

Machine Learning Made Easy with R PDF Author: N. Lewis
Publisher:
ISBN: 9781546483755
Category :
Languages : en
Pages : 356

Book Description
Finally, A Blueprint for Machine Learning with R! Machine Learning Made Easy with R offers a practical tutorial that uses hands-on examples to step through real-world applications using clear and practical case studies. Through this process it takes you on a gentle, fun and unhurried journey to creating machine learning models with R. Whether you are new to data science or a veteran, this book offers a powerful set of tools for quickly and easily gaining insight from your data using R. NO EXPERIENCE REQUIRED: This book uses plain language rather than a ton of equations; I'm assuming you never did like linear algebra, don't want to see things derived, dislike complicated computer code, and you're here because you want to try successful machine learning algorithms for yourself. YOUR PERSONAL BLUE PRINT: Through a simple to follow intuitive step by step process, you will learn how to use the most popular machine learning algorithms using R. Once you have mastered the process, it will be easy for you to translate your knowledge to assess your own data. THIS BOOK IS FOR YOU IF YOU WANT: Focus on explanations rather than mathematical derivation Practical illustrations that use real data. Illustrations to deepen your understanding. Worked examples in R you can easily follow and immediately implement. Ideas you can actually use and try on your own data. TAKE THE SHORTCUT: This guide was written for people just like you. Individuals who want to get up to speed as quickly as possible. to: YOU'LL LEARN HOW TO: Unleash the power of Decision Trees. Develop hands on skills using k-Nearest Neighbors. Design successful applications with Naive Bayes. Deploy Linear Discriminant Analysis. Explore Support Vector Machines. Master Linear and logistic regression. Create solutions with Random Forests. Solve complex problems with Boosting. Gain deep insights via K-Means clustering. Acquire tips to enhance model performance. For each machine learning algorithm, every step in the process is detailed, from preparing the data for analysis, to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks. Using plain language, this book offers a simple, intuitive, practical, non-mathematical, easy to follow guide to the most successful ideas, outstanding techniques and usable solutions available using R. Everything you need to get started is contained within this book. Machine Learning Made Easy with R is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today and accelerate your progress!

Deep Learning Made Easy with R

Deep Learning Made Easy with R PDF Author: N. D. Lewis
Publisher:
ISBN: 9781533013620
Category :
Languages : en
Pages : 218

Book Description
Who Else Wants to Master Deep Learning in Half the Time? Start building smarter models today using R ! Build Deep Learning Models Faster Then You Imagined Possible! This book provides an accessible, hands on, easy to follow guide to building deep learning models in R. If you want to accelerate your progress, discover the best in deep learning and act on what you have learned, this book is for you. It is designed for anyone who wishes to gain a practical understanding of the important modeling and prediction techniques that make up the increasingly lucrative discipline of deep learning. NO EXPERIENCE REQUIRED: - Bestselling data scientist Dr. N. D Lewis cuts a clear path through the jargon, opening the way for you to discover, understand, apply and exploit the potential of deep learning in your own research. Following on from the success of the first book in the Deep Learning Made Easy Series, it gives you new deep learning tools to use in your very own research. . YOU'LL LEARN HOW TO: Unleash the power of Kernel Deep Convex Neural Networks. Develop winning solutions with Deep Boosting. Explore, evaluate and exploit Monotone Neural Networks. Design successful solutions with Extreme Learning Machines. Master Deep Autoencoders. Ignite your use of Self-Organizing Polynomial Neural Networks. This hands on text is for individuals who want to master the subject in the minimum amount of time. It leverages the power of the FREE predictive analytic package R to provide you with the necessary tools to maximize your understanding, deepen your knowledge and unleash ideas to enhance your data science projects. THIS BOOK IS FOR YOU IF YOU WANT:: Real world applications that make sense. Examples to stimulate your thinking. Illustrations to deepen your understanding. Worked examples in R you can easily follow and immediately implement. Ideas you can actually use. Deep Learning Made Easy with R:Volume II is your very own hands on practical, tactical, easy to follow guide to mastery. Buy this book today and join the data science revolution!

Machine Learning with R

Machine Learning with R PDF Author: Brett Lantz
Publisher: Packt Publishing Ltd
ISBN: 1782162151
Category : Computers
Languages : en
Pages : 587

Book Description
Written as a tutorial to explore and understand the power of R for machine learning. This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.

Deep Learning with R

Deep Learning with R PDF Author: François Chollet
Publisher: Simon and Schuster
ISBN: 1638351635
Category : Computers
Languages : en
Pages : 528

Book Description
Summary Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. The book builds your understanding of deep learning through intuitive explanations and practical examples. Continue your journey into the world of deep learning with Deep Learning with R in Motion, a practical, hands-on video course available exclusively at Manning.com (www.manning.com/livevideo/deep-​learning-with-r-in-motion). Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning has made remarkable progress in recent years. Deep-learning systems now enable previously impossible smart applications, revolutionizing image recognition and natural-language processing, and identifying complex patterns in data. The Keras deep-learning library provides data scientists and developers working in R a state-of-the-art toolset for tackling deep-learning tasks. About the Book Deep Learning with R introduces the world of deep learning using the powerful Keras library and its R language interface. Initially written for Python as Deep Learning with Python by Keras creator and Google AI researcher François Chollet and adapted for R by RStudio founder J. J. Allaire, this book builds your understanding of deep learning through intuitive explanations and practical examples. You'll practice your new skills with R-based applications in computer vision, natural-language processing, and generative models. What's Inside Deep learning from first principles Setting up your own deep-learning environment Image classification and generation Deep learning for text and sequences About the Reader You'll need intermediate R programming skills. No previous experience with machine learning or deep learning is assumed. About the Authors François Chollet is a deep-learning researcher at Google and the author of the Keras library. J.J. Allaire is the founder of RStudio and the author of the R interfaces to TensorFlow and Keras. Table of Contents PART 1 - FUNDAMENTALS OF DEEP LEARNING What is deep learning? Before we begin: the mathematical building blocks of neural networks Getting started with neural networks Fundamentals of machine learning PART 2 - DEEP LEARNING IN PRACTICE Deep learning for computer vision Deep learning for text and sequences Advanced deep-learning best practices Generative deep learning Conclusions

Machine Learning For Dummies

Machine Learning For Dummies PDF Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 1119724015
Category : Computers
Languages : en
Pages : 471

Book Description
One of Mark Cuban’s top reads for better understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex Machina—it is a form of artificial intelligence and one of the most exciting technological means of identifying opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine learning is mastering a big part of our tech future and opening up incredible new directions in careers that include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd Edition of Machine Learning For Dummies doesn't assume you have years of experience using programming languages such as Python (R source is also included in a downloadable form with comments and explanations), but lets you in on the ground floor, covering the entry-level materials that will get you up and running building models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles that power machine learning but also shows that you don't need to be a math whiz to build fun new tools and apply them to your work and study. Understand the history of AI and machine learning Work with Python 3.8 and TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the worn out data found in other books Apply machine learning to real problems Whether you want to learn for college or to enhance your business or career performance, this friendly beginner's guide is your best introduction to machine learning, allowing you to become quickly confident using this amazing and fast-developing technology that's impacting lives for the better all over the world.

Mathematics for Machine Learning

Mathematics for Machine Learning PDF Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
ISBN: 1108569323
Category : Computers
Languages : en
Pages : 392

Book Description
The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Machine Learning Using R

Machine Learning Using R PDF Author: Karthik Ramasubramanian
Publisher: Apress
ISBN: 1484242157
Category : Computers
Languages : en
Pages : 712

Book Description
Examine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R. As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning. What You'll Learn Understand machine learning algorithms using R Master the process of building machine-learning models Cover the theoretical foundations of machine-learning algorithms See industry focused real-world use cases Tackle time series modeling in R Apply deep learning using Keras and TensorFlow in R Who This Book is For Data scientists, data science professionals, and researchers in academia who want to understand the nuances of machine-learning approaches/algorithms in practice using R.

Practical Machine Learning in R

Practical Machine Learning in R PDF Author: Fred Nwanganga
Publisher: John Wiley & Sons
ISBN: 1119591511
Category : Computers
Languages : en
Pages : 464

Book Description
Guides professionals and students through the rapidly growing field of machine learning with hands-on examples in the popular R programming language Machine learning—a branch of Artificial Intelligence (AI) which enables computers to improve their results and learn new approaches without explicit instructions—allows organizations to reveal patterns in their data and incorporate predictive analytics into their decision-making process. Practical Machine Learning in R provides a hands-on approach to solving business problems with intelligent, self-learning computer algorithms. Bestselling author and data analytics experts Fred Nwanganga and Mike Chapple explain what machine learning is, demonstrate its organizational benefits, and provide hands-on examples created in the R programming language. A perfect guide for professional self-taught learners or students in an introductory machine learning course, this reader-friendly book illustrates the numerous real-world business uses of machine learning approaches. Clear and detailed chapters cover data wrangling, R programming with the popular RStudio tool, classification and regression techniques, performance evaluation, and more. Explores data management techniques, including data collection, exploration and dimensionality reduction Covers unsupervised learning, where readers identify and summarize patterns using approaches such as apriori, eclat and clustering Describes the principles behind the Nearest Neighbor, Decision Tree and Naive Bayes classification techniques Explains how to evaluate and choose the right model, as well as how to improve model performance using ensemble methods such as Random Forest and XGBoost Practical Machine Learning in R is a must-have guide for business analysts, data scientists, and other professionals interested in leveraging the power of AI to solve business problems, as well as students and independent learners seeking to enter the field.

R Machine Learning Projects

R Machine Learning Projects PDF Author: Dr. Sunil Kumar Chinnamgari
Publisher: Packt Publishing Ltd
ISBN: 1789806097
Category : Mathematics
Languages : en
Pages : 325

Book Description
Master a range of machine learning domains with real-world projects using TensorFlow for R, H2O, MXNet, and more Key FeaturesMaster machine learning, deep learning, and predictive modeling concepts in R 3.5Build intelligent end-to-end projects for finance, retail, social media, and a variety of domainsImplement smart cognitive models with helpful tips and best practicesBook Description R is one of the most popular languages when it comes to performing computational statistics (statistical computing) easily and exploring the mathematical side of machine learning. With this book, you will leverage the R ecosystem to build efficient machine learning applications that carry out intelligent tasks within your organization. This book will help you test your knowledge and skills, guiding you on how to build easily through to complex machine learning projects. You will first learn how to build powerful machine learning models with ensembles to predict employee attrition. Next, you’ll implement a joke recommendation engine and learn how to perform sentiment analysis on Amazon reviews. You’ll also explore different clustering techniques to segment customers using wholesale data. In addition to this, the book will get you acquainted with credit card fraud detection using autoencoders, and reinforcement learning to make predictions and win on a casino slot machine. By the end of the book, you will be equipped to confidently perform complex tasks to build research and commercial projects for automated operations. What you will learnExplore deep neural networks and various frameworks that can be used in RDevelop a joke recommendation engine to recommend jokes that match users’ tastesCreate powerful ML models with ensembles to predict employee attritionBuild autoencoders for credit card fraud detectionWork with image recognition and convolutional neural networks Make predictions for casino slot machine using reinforcement learningImplement NLP techniques for sentiment analysis and customer segmentationWho this book is for If you’re a data analyst, data scientist, or machine learning developer who wants to master machine learning concepts using R by building real-world projects, this is the book for you. Each project will help you test your skills in implementing machine learning algorithms and techniques. A basic understanding of machine learning and working knowledge of R programming is necessary to get the most out of this book.

Machine Learning Made Easy

Machine Learning Made Easy PDF Author: Timeo Williams
Publisher: Panel PR
ISBN:
Category : Computers
Languages : en
Pages : 11

Book Description
Discover the power of machine learning with ease! Whether you're a beginner or seasoned pro, "Machine Learning Made Easy" is your go-to guide. From basics to real-world applications, this book breaks down complex concepts into simple, actionable steps. Learn core principles, practical techniques, and apply them to diverse fields like healthcare and finance. With clear explanations and hands-on examples, you'll master machine learning effortlessly. Don't miss out—unlock the potential of machine learning today!