Machine Learning in Clinical Neuroimaging

Machine Learning in Clinical Neuroimaging PDF Author: Ahmed Abdulkadir
Publisher: Springer Nature
ISBN: 3030875865
Category : Computers
Languages : en
Pages : 185

Book Description
This book constitutes the refereed proceedings of the 4th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2021, held on September 27, 2021, in conjunction with MICCAI 2021. The workshop was held virtually due to the COVID-19 pandemic. The 17 papers presented in this book were carefully reviewed and selected from 27 submissions. They were organized in topical sections named: computational anatomy and brain networks and time series.

Machine Learning in Clinical Neuroscience

Machine Learning in Clinical Neuroscience PDF Author: Victor E. Staartjes
Publisher: Springer Nature
ISBN: 303085292X
Category : Medical
Languages : en
Pages : 343

Book Description
This book bridges the gap between data scientists and clinicians by introducing all relevant aspects of machine learning in an accessible way, and will certainly foster new and serendipitous applications of machine learning in the clinical neurosciences. Building from the ground up by communicating the foundational knowledge and intuitions first before progressing to more advanced and specific topics, the book is well-suited even for clinicians without prior machine learning experience. Authored by a wide array of experienced global machine learning groups, the book is aimed at clinicians who are interested in mastering the basics of machine learning and who wish to get started with their own machine learning research. The volume is structured in two major parts: The first uniquely introduces all major concepts in clinical machine learning from the ground up, and includes step-by-step instructions on how to correctly develop and validate clinical prediction models. It also includes methodological and conceptual foundations of other applications of machine learning in clinical neuroscience, such as applications of machine learning to neuroimaging, natural language processing, and time series analysis. The second part provides an overview of some state-of-the-art applications of these methodologies. The Machine Intelligence in Clinical Neuroscience (MICN) Laboratory at the Department of Neurosurgery of the University Hospital Zurich studies clinical applications of machine intelligence to improve patient care in clinical neuroscience. The group focuses on diagnostic, prognostic and predictive analytics that aid in decision-making by increasing objectivity and transparency to patients. Other major interests of our group members are in medical imaging, and intraoperative applications of machine vision.

Machine Learning

Machine Learning PDF Author: Andrea Mechelli
Publisher: Academic Press
ISBN: 0128157402
Category : Medical
Languages : en
Pages : 412

Book Description
Machine Learning is an area of artificial intelligence involving the development of algorithms to discover trends and patterns in existing data; this information can then be used to make predictions on new data. A growing number of researchers and clinicians are using machine learning methods to develop and validate tools for assisting the diagnosis and treatment of patients with brain disorders. Machine Learning: Methods and Applications to Brain Disorders provides an up-to-date overview of how these methods can be applied to brain disorders, including both psychiatric and neurological disease. This book is written for a non-technical audience, such as neuroscientists, psychologists, psychiatrists, neurologists and health care practitioners. - Provides a non-technical introduction to machine learning and applications to brain disorders - Includes a detailed description of the most commonly used machine learning algorithms as well as some novel and promising approaches - Covers the main methodological challenges in the application of machine learning to brain disorders - Provides a step-by-step tutorial for implementing a machine learning pipeline to neuroimaging data in Python

Machine Learning and Medical Imaging

Machine Learning and Medical Imaging PDF Author: Guorong Wu
Publisher: Academic Press
ISBN: 0128041145
Category : Computers
Languages : en
Pages : 514

Book Description
Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, and clinicians. - Demonstrates the application of cutting-edge machine learning techniques to medical imaging problems - Covers an array of medical imaging applications including computer assisted diagnosis, image guided radiation therapy, landmark detection, imaging genomics, and brain connectomics - Features self-contained chapters with a thorough literature review - Assesses the development of future machine learning techniques and the further application of existing techniques

Big Data in Psychiatry and Neurology

Big Data in Psychiatry and Neurology PDF Author: Ahmed Moustafa
Publisher: Academic Press
ISBN: 0128230029
Category : Medical
Languages : en
Pages : 386

Book Description
Big Data in Psychiatry and Neurology provides an up-to-date overview of achievements in the field of big data in Psychiatry and Medicine, including applications of big data methods to aging disorders (e.g., Alzheimer's disease and Parkinson's disease), mood disorders (e.g., major depressive disorder), and drug addiction. This book will help researchers, students and clinicians implement new methods for collecting big datasets from various patient populations. Further, it will demonstrate how to use several algorithms and machine learning methods to analyze big datasets, thus providing individualized treatment for psychiatric and neurological patients. As big data analytics is gaining traction in psychiatric research, it is an essential component in providing predictive models for both clinical practice and public health systems. As compared with traditional statistical methods that provide primarily average group-level results, big data analytics allows predictions and stratification of clinical outcomes at an individual subject level. - Discusses longitudinal big data and risk factors surrounding the development of psychiatric disorders - Analyzes methods in using big data to treat psychiatric and neurological disorders - Describes the role machine learning can play in the analysis of big data - Demonstrates the various methods of gathering big data in medicine - Reviews how to apply big data to genetics

The Cambridge Handbook of Research Methods in Clinical Psychology

The Cambridge Handbook of Research Methods in Clinical Psychology PDF Author: Aidan G. C. Wright
Publisher: Cambridge University Press
ISBN: 9781316639528
Category : Psychology
Languages : en
Pages : 600

Book Description
This book integrates philosophy of science, data acquisition methods, and statistical modeling techniques to present readers with a forward-thinking perspective on clinical science. It reviews modern research practices in clinical psychology that support the goals of psychological science, study designs that promote good research, and quantitative methods that can test specific scientific questions. It covers new themes in research including intensive longitudinal designs, neurobiology, developmental psychopathology, and advanced computational methods such as machine learning. Core chapters examine significant statistical topics, for example missing data, causality, meta-analysis, latent variable analysis, and dyadic data analysis. A balanced overview of observational and experimental designs is also supplied, including preclinical research and intervention science. This is a foundational resource that supports the methodological training of the current and future generations of clinical psychological scientists.

Data-Driven Computational Neuroscience

Data-Driven Computational Neuroscience PDF Author: Concha Bielza
Publisher: Cambridge University Press
ISBN: 110849370X
Category : Computers
Languages : en
Pages : 709

Book Description
Trains researchers and graduate students in state-of-the-art statistical and machine learning methods to build models with real-world data.

Neuroethics

Neuroethics PDF Author: Judy Illes
Publisher: Oxford University Press
ISBN: 0198786832
Category : Law
Languages : en
Pages : 693

Book Description
Over the last decade, there have been unparalleled advances in our understanding of brain sciences. In this volume on neuroethics, a distinguished group of contributors from a range of disciplines discuss the ethical implications of this newfound knowledge and set out the many necessary considerations for the future.

Neuroscience Trials of the Future

Neuroscience Trials of the Future PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309442583
Category : Medical
Languages : en
Pages : 111

Book Description
On March 3-4, 2016, the National Academies of Sciences, Engineering, and Medicine's Forum on Neuroscience and Nervous System Disorders held a workshop in Washington, DC, bringing together key stakeholders to discuss opportunities for improving the integrity, efficiency, and validity of clinical trials for nervous system disorders. Participants in the workshop represented a range of diverse perspectives, including individuals not normally associated with traditional clinical trials. The purpose of this workshop was to generate discussion about not only what is feasible now, but what may be possible with the implementation of cutting-edge technologies in the future.

OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging

OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging PDF Author: Luping Zhou
Publisher: Springer
ISBN: 9783030326944
Category : Computers
Languages : en
Pages : 0

Book Description
This book constitutes the refereed proceedings of the Second International Workshop on Context-Aware Surgical Theaters, OR 2.0 2019, and the Second International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2019, held in conjunction with MICCAI 2019, in Shenzhen, China, in October 2019. For OR 2.0 all 6 submissions were accepted for publication. They aim to highlight the potential use of machine vision and perception, robotics, surgical simulation and modeling, multi-modal data fusion and visualization, image analysis, advanced imaging, advanced display technologies, human-computer interfaces, sensors, wearable and implantable electronics and robots, visual attention models, cognitive models, decision support networks to enhance surgical procedural assistance, context-awareness and team communication in the operating theater, human-robot collaborative systems, and surgical training and assessment. MLCN 2019 accepted 6 papers out of 7 submissions for publication. They focus on addressing the problems of applying machine learning to large and multi-site clinical neuroimaging datasets. The workshop aimed to bring together experts in both machine learning and clinical neuroimaging to discuss and hopefully bridge the existing challenges of applied machine learning in clinical neuroscience. Chapter 5 is available open access under a Creative Commons Attribution 4.0 International License via Springerlink.