Machine-learning-accelerated Materials Discovery for Perovskites PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Machine-learning-accelerated Materials Discovery for Perovskites PDF full book. Access full book title Machine-learning-accelerated Materials Discovery for Perovskites by Jeffrey Reuben Kirman. Download full books in PDF and EPUB format.

Machine-learning-accelerated Materials Discovery for Perovskites

Machine-learning-accelerated Materials Discovery for Perovskites PDF Author: Jeffrey Reuben Kirman
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Reaching the full potential of optoelectronic materials is often hindered by the years of necessary trial-and-error. Perovskites are an example of materials having exceptional optoelectronic properties, but require improvement with respect to stability and toxicity as they approach commercialization. Exploring new types of perovskites is key to achieving these goals. In this thesis I develop an accelerated materials discovery pipeline aimed at discovering new perovskite materials. This pipeline incorporates image recognition that detects crystals via convolutional neural networks with 95% accuracy and uses parameter exploration to predict an optimal material with experimental data. With this framework, I discovered a new type of perovskite single crystal, (3-PLA)2PbCl4, that employs a new ligand, 3-PLA, offering avenues to higher efficiency and more stable devices. This work develops a framework for discovering and optimizing materials in a wide chemical space and provides the groundwork for identifying new materials that lie beyond known chemical spaces.

Machine-learning-accelerated Materials Discovery for Perovskites

Machine-learning-accelerated Materials Discovery for Perovskites PDF Author: Jeffrey Reuben Kirman
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Reaching the full potential of optoelectronic materials is often hindered by the years of necessary trial-and-error. Perovskites are an example of materials having exceptional optoelectronic properties, but require improvement with respect to stability and toxicity as they approach commercialization. Exploring new types of perovskites is key to achieving these goals. In this thesis I develop an accelerated materials discovery pipeline aimed at discovering new perovskite materials. This pipeline incorporates image recognition that detects crystals via convolutional neural networks with 95% accuracy and uses parameter exploration to predict an optimal material with experimental data. With this framework, I discovered a new type of perovskite single crystal, (3-PLA)2PbCl4, that employs a new ligand, 3-PLA, offering avenues to higher efficiency and more stable devices. This work develops a framework for discovering and optimizing materials in a wide chemical space and provides the groundwork for identifying new materials that lie beyond known chemical spaces.

Artificial Intelligence for Materials Science

Artificial Intelligence for Materials Science PDF Author: Yuan Cheng
Publisher: Springer Nature
ISBN: 3030683109
Category : Technology & Engineering
Languages : en
Pages : 231

Book Description
Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.

Accelerated Materials Discovery

Accelerated Materials Discovery PDF Author: Phil De Luna
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110733250
Category : Computers
Languages : en
Pages : 235

Book Description
Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world’s biggest challenges. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs).

Machine learning accelerated discovery of high transmittance in (K0.5Na0.5)NbO3-based ceramics

Machine learning accelerated discovery of high transmittance in (K0.5Na0.5)NbO3-based ceramics PDF Author: Bowen Ma
Publisher: OAE Publishing Inc.
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 16

Book Description
High optical transmittance (T%) has always been an important indicator of transparent-ferroelectric ceramics for optoelectronic coupling. However, the pathway of pursuing high transparency has been at the experimental trial-and-error stage over the past decades, manifesting major drawbacks of being time-consuming and resource-wasting. The present work introduces a machine learning (ML) accelerated development of highly transparent-ferroelectrics by taking potassium-sodium niobate (KNN)-based ceramics as the model material. It is highlighted that by using a small data set of 118 sample data and four key features, we predict the T% of un-synthesized KNN-based ceramics and evaluate the importance of key features. Meanwhile, the screened (K0.5Na0.5)0.956Tb0.004Ba0.04NbO3 ceramics were successfully realized by the conventional solid-state synthesis, and the experimental measured T% is in full agreement with the predicted results, exhibiting a satisfactory high T% of ~78% at 800 nm. In addition, ML is also used to explore the best experimental parameters, and the prediction results of T% are particularly sensitive to changes in sintering temperature (ST). Eventually, the predicted optimal ST is highly consistent with the experimental one. This study constructs a new avenue for exploring high T% ferroelectric KNN ceramics based on ML, ascertaining optimal process parameters, and guiding the development of other transparent-ferroelectrics in optoelectronic fields.

Information Science for Materials Discovery and Design

Information Science for Materials Discovery and Design PDF Author: Turab Lookman
Publisher: Springer
ISBN: 331923871X
Category : Technology & Engineering
Languages : en
Pages : 316

Book Description
This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.

Computational Materials System Design

Computational Materials System Design PDF Author: Dongwon Shin
Publisher: Springer
ISBN: 3319682806
Category : Technology & Engineering
Languages : en
Pages : 239

Book Description
This book provides state-of-the-art computational approaches for accelerating materials discovery, synthesis, and processing using thermodynamics and kinetics. The authors deliver an overview of current practical computational tools for materials design in the field. They describe ways to integrate thermodynamics and kinetics and how the two can supplement each other.

Materials Discovery and Design

Materials Discovery and Design PDF Author: Turab Lookman
Publisher: Springer
ISBN: 3319994654
Category : Science
Languages : en
Pages : 266

Book Description
This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.

Machine Learning in Materials Science

Machine Learning in Materials Science PDF Author: Keith T. Butler
Publisher: American Chemical Society
ISBN: 0841299463
Category : Technology & Engineering
Languages : en
Pages : 176

Book Description
Machine Learning for Materials Science provides the fundamentals and useful insight into where Machine Learning (ML) will have the greatest impact for the materials science researcher. This digital primer provides example methods for ML applied to experiments and simulations, including the early stages of building an ML solution for a materials science problem, concentrating on where and how to get data and some of the considerations when choosing an approach. The authors demonstrate how to build more robust models, how to make sure that your colleagues trust the results, and how to use ML to accelerate or augment simulations, by introducing methods in which ML can be applied to analyze and process experimental data. They also cover how to build integrated closed-loop experiments where ML is used to plan the course of a materials optimization experiment and how ML can be utilized in the discovery of materials on computers.

Quantum Chemistry in the Age of Machine Learning

Quantum Chemistry in the Age of Machine Learning PDF Author: Pavlo O. Dral
Publisher: Elsevier
ISBN: 0323886043
Category : Science
Languages : en
Pages : 702

Book Description
Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field. - Compiles advances of machine learning in quantum chemistry across different areas into a single resource - Provides insights into the underlying concepts of machine learning techniques that are relevant to quantum chemistry - Describes, in detail, the current state-of-the-art machine learning-based methods in quantum chemistry

Computational Materials Discovery

Computational Materials Discovery PDF Author: Artem Oganov
Publisher: Royal Society of Chemistry
ISBN: 1782629610
Category : Science
Languages : en
Pages : 470

Book Description
A unique and timely book providing an overview of both the methodologies and applications of computational materials design.