Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs PDF full book. Access full book title Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs by Emad Walid Al Shalabi. Download full books in PDF and EPUB format.

Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs

Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs PDF Author: Emad Walid Al Shalabi
Publisher: Gulf Professional Publishing
ISBN: 0128136057
Category : Technology & Engineering
Languages : en
Pages : 179

Book Description
Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs provides a first of its kind review of the low salinity and engineered water injection (LSWI/EWI) techniques for today’s more complex enhanced oil recovery methods. Reservoir engineers today are challenged in the design and physical mechanisms behind low salinity injection projects, and to date, the research is currently only located in numerous journal locations. This reference helps readers overcome these challenging issues with explanations on models, experiments, mechanism analysis, and field applications involved in low salinity and engineered water. Covering significant laboratory, numerical, and field studies, lessons learned are also highlighted along with key areas for future research in this fast-growing area of the oil and gas industry. After an introduction to its techniques, the initial chapters review the main experimental findings and explore the mechanisms behind the impact of LSWI/EWI on oil recovery. The book then moves on to the critical area of modeling and simulation, discusses the geochemistry of LSWI/EWI processes, and applications of LSWI/EWI techniques in the field, including the authors’ own recommendations based on their extensive experience. It is an essential reference for professional reservoir and field engineers, researchers and students working on LSWI/EWI and seeking to apply these methods for increased oil recovery. Teaches users how to understand the various mechanisms contributing to incremental oil recovery using low salinity and engineering water injection (LSWI/EWI) in sandstones and carbonates Balances guidance between designing laboratory experiments, to applying the LSWI/EWI techniques at both pilot-scale and full-field-scale for real-world operations Presents state-of-the-art approaches to simulation and modeling of LSWI/EWI

Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs

Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs PDF Author: Emad Walid Al Shalabi
Publisher: Gulf Professional Publishing
ISBN: 0128136057
Category : Technology & Engineering
Languages : en
Pages : 179

Book Description
Low Salinity and Engineered Water Injection for Sandstone and Carbonate Reservoirs provides a first of its kind review of the low salinity and engineered water injection (LSWI/EWI) techniques for today’s more complex enhanced oil recovery methods. Reservoir engineers today are challenged in the design and physical mechanisms behind low salinity injection projects, and to date, the research is currently only located in numerous journal locations. This reference helps readers overcome these challenging issues with explanations on models, experiments, mechanism analysis, and field applications involved in low salinity and engineered water. Covering significant laboratory, numerical, and field studies, lessons learned are also highlighted along with key areas for future research in this fast-growing area of the oil and gas industry. After an introduction to its techniques, the initial chapters review the main experimental findings and explore the mechanisms behind the impact of LSWI/EWI on oil recovery. The book then moves on to the critical area of modeling and simulation, discusses the geochemistry of LSWI/EWI processes, and applications of LSWI/EWI techniques in the field, including the authors’ own recommendations based on their extensive experience. It is an essential reference for professional reservoir and field engineers, researchers and students working on LSWI/EWI and seeking to apply these methods for increased oil recovery. Teaches users how to understand the various mechanisms contributing to incremental oil recovery using low salinity and engineering water injection (LSWI/EWI) in sandstones and carbonates Balances guidance between designing laboratory experiments, to applying the LSWI/EWI techniques at both pilot-scale and full-field-scale for real-world operations Presents state-of-the-art approaches to simulation and modeling of LSWI/EWI

Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs

Modeling the Effect of Injecting Low Salinity Water on Oil Recovery from Carbonate Reservoirs PDF Author: Emad W. Al Shalabi
Publisher: Emad W. Al Shalabi
ISBN:
Category :
Languages : en
Pages : 697

Book Description
The low salinity water injection technique (LSWI) has become one of the important research topics in the oil industry because of its possible advantages for improving oil recovery. Several mechanisms describing the LSWI process have been suggested in the literature; however, there is no consensus on a single main mechanism for the low salinity effect on oil recovery. As a result of the latter, there are few models for LSWI and especially for carbonates due to their heterogeneity and complexity. In this research, we proposed a systematic approach for modeling the LSWI effect on oil recovery from carbonates by proposing six different methods for history matching and three different LSWI models for the UTCHEM simulator, empirical, fundamental, and mechanistic LSWI models. The empirical LSWI model uses contact angle measurements and injected water salinity. The fundamental LSWI model captures the effect of LSWI through the trapping number. In the mechanistic LSWI model, we include the effect of different geochemical reactions through Gibbs free energy. Moreover, field-scale predictions of LSWI were performed and followed by a sensitivity analysis for the most influential design parameters using design of experiment (DoE). The LSWI technique was also optimized using the response surface methodology (RSM) where a response surface was built. Also, we moved a step further by investigating the combined effect of injecting low salinity water and carbon dioxide on oil recovery from carbonates through modeling of the process and numerical simulations using the UTCOMP simulator. The analysis showed that CO2 is the main controller of the residual oil saturation whereas the low salinity water boosts the oil production rate by increasing the oil relative permeability through wettability alteration towards a more water-wet state. In addition, geochemical modeling of LSWI only and the combined effect of LSWI and CO2 were performed using both UTCHEM and PHREEQC upon which the geochemical model in UTCHEM was modified and validated against PHREEQC. Based on the geochemical interpretation of the LSWI technique, we believe that wettability alteration is the main contributor to the LSWI effect on oil recovery from carbonates by anhydrite dissolution and surface charge change through pH exceeding the point of zero charge.

Novel Insights Into Low Salinity Water Flooding Enhanced Oil Recovery in Sandstone Reservoirs

Novel Insights Into Low Salinity Water Flooding Enhanced Oil Recovery in Sandstone Reservoirs PDF Author: Hasan N. Al-Saedi
Publisher:
ISBN:
Category :
Languages : en
Pages : 199

Book Description
"Ever growing global energy demand and the natural decline in oil production from mature oil fields have been the main incentives to search for methods to increase recovery efficiency for several decades. Water flooding is extensively applied worldwide to improve oil recovery. The recent drop in oil prices has turned the oil industry to the cheapest improved oil recovery (IOR) techniques, such as low salinity (LS) waterflooding. Also, the reduction in reservoir energy and the friendly environmental aspects of low salinity water flooding (LSWF) provide additional incentives for its use. That LS water requires decreasing only the active divalent cations such as Ca2+, Mg2+ and water salinity makes LS water flooding a relatively simple and low expense IOR technique. The water chemistry significantly impacts the oil recovery factor. Wettability is one of the major parameters that control the efficiency of water flooding. The primary mechanism for increased oil recovery during LSWF in both sandstone and carbonate reservoirs is wettability alteration of the rock surface from oil-wet to water-wet. LS water imbibed into the low water-wet zones, the water wetness of the rock increased after injecting LS water, and in turn, microscopic sweep efficiency enhanced too. The mechanism behind LS water flooding has been extensively investigated in the literature but it still a topic of debate. The objective of this research is to solve the controversy and show the following: (1) Water chemistry weather partially or strongly determines the dominant wettability alteration mode. (2) The role of divalent cations in the formation water and in the injected water. (3) Clay's role for incremental recovery. This research work seeks to quantify the effects of mineral composition and water chemistry on water-rock interactions and wettability alteration"--Abstract, page

Hybrid Enhanced Oil Recovery Using Smart Waterflooding

Hybrid Enhanced Oil Recovery Using Smart Waterflooding PDF Author: Kun Sang Lee
Publisher: Gulf Professional Publishing
ISBN: 0128172983
Category : Business & Economics
Languages : en
Pages : 152

Book Description
Hybrid Enhanced Oil Recovery Using Smart Waterflooding explains the latest technologies used in the integration of low-salinity and smart waterflooding in other EOR processes to reduce risks attributed to numerous difficulties in existing technologies, also introducing the synergetic effects. Covering both lab and field work and the challenges ahead, the book delivers a cutting-edge product for today’s reservoir engineers. Explains how smart waterflooding is beneficial to each EOR process, such as miscible, chemical and thermal technologies Discusses the mechanics and modeling involved using geochemistry Provides extensive tools, such as reservoir simulations through experiments and field tests, establishing a bridge between theory and practice

Waterflooding

Waterflooding PDF Author: G. Paul Willhite
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 358

Book Description
Waterflooding begins with understanding the basic principles of immiscible displacement, then presents a systematic procedure for designing a waterflood.

Low Salinity Water Flooding Application on Different Reservoir Rock Types

Low Salinity Water Flooding Application on Different Reservoir Rock Types PDF Author: mohamed magdy
Publisher: محمد مجدي
ISBN:
Category : Antiques & Collectibles
Languages : en
Pages : 107

Book Description
Surface chemistry has a great effect in enhancing oil recovery. For oil-wet sandstone reservoirs, low salinity waterflooding (LSWF) is effective as it can alter rock wettability and reduce the oil/water interfacial tension. LSWF application is related to rock’s clay content and type. Clay hydrocarbon bonding can be formed through many mechanisms such as van deer waals forces and ionic bridge. LSWF effect is to weaken these bonds through two main mechanisms, Double Layer Expansion (DLE) and Multicomponent Ionic Exchange (MIE). Two fields (S and D), in Egypt’s Western Desert, have depleted strongly oil-wet reservoirs with similar rock and fluid properties. Field (S) is flooded by low salinity water (LSW), while Field (D) is flooded by high salinity water (HSW). Fortunately, the water source for Field (S) flooding is a LSW zone, which has a salinity +/- 5000 ppm as total dissolved solids (TDS). The formation water salinity was +/- 25,000 ppm as TDS. Field (S) lab experiments showed good compatibility between injected LSW, formation water and rock minerals. XRD and SEM indicate calcareous cementation with detrital clays content around 5%. Kaolinite is the common clay type, which has a low cation exchange capacity. For Field (S), the estimated ultimate recovery (EUR) is 46%, while EUR for Field (D) is 39%. One of the main causes of this increase in Field (S) is LSWF application.

Recovery Improvement

Recovery Improvement PDF Author: Qiwei Wang
Publisher: Gulf Professional Publishing
ISBN: 0128234385
Category : Science
Languages : en
Pages : 614

Book Description
Oil and Gas Chemistry Management Series brings an all-inclusive suite of tools to cover all the sectors of oil and gas chemicals from drilling, completion to production, processing, storage, and transportation. The third reference in the series, Recovery Improvement, delivers the critical chemical basics while also covering the latest research developments and practical solutions. Organized by the type of enhanced recovery approaches, this volume facilitates engineers to fully understand underlying theories, potential challenges, practical problems, and keys for successful deployment. In addition to the chemical, gas, and thermal methods, this reference volume also includes low-salinity (smart) water, microorganism- and nanofluid-based recovery enhancement, and chemical solutions for conformance control and water shutoff in near wellbore and deep in the reservoir. Supported by a list of contributing experts from both academia and industry, this book provides a necessary reference to bridge petroleum chemistry operations from theory into more cost-efficient and sustainable practical applications. Covers background information and practical guidelines for various recovery enhancement domains, including chapters on enhanced oil recovery in unconventional reservoirs and carbon sequestration in CO2 gas flooding for more environment-friendly and more sustainable initiatives Provides effective solutions to control chemistry-related issues and mitigation strategies for potential challenges from an industry list of experts and contributors Delivers both up-to-date research developments and practical applications, featuring various case studies

Mechanistic Modeling of Low Salinity Water Injection

Mechanistic Modeling of Low Salinity Water Injection PDF Author: Aboulghasem Kazemi Nia Korrani
Publisher:
ISBN:
Category :
Languages : en
Pages : 1262

Book Description
Low salinity waterflooding is an emerging enhanced oil recovery (EOR) technique in which the salinity of the injected water is substantially reduced to improve oil recovery over conventional higher salinity waterflooding. Although there are many low salinity experimental results reported in the literature, publications on modeling this process are rare. While there remains some debate about the mechanisms of low salinity waterflooding, the geochemical reactions that control the wetting of crude oil on the rock are likely to be central to a detailed description of the process. Since no comprehensive geochemical-based modeling has been applied in this area, we decided to couple a state-of-the-art geochemical package, IPhreeqc, developed by the United States Geological Survey (USGS) with UTCOMP, the compositional reservoir simulator developed at the Center for Petroleum and Geosystems Engineering in The University of Texas at Austin. A step-by-step algorithm is presented for integrating IPhreeqc with UTCOMP. Through this coupling, we are able to simulate homogeneous and heterogeneous (mineral dissolution/precipitation), irreversible, and ion-exchange reactions under non-isothermal, non-isobaric and both local-equilibrium and kinetic conditions. Consistent with the literature, there are significant effects of water-soluble hydrocarbon components (e.g., CO2, CH4, and acidic/basic components of the crude) on buffering the aqueous pH and more generally, on the crude oil, brine, and rock reactions. Thermodynamic constrains are used to explicitly include the effect of these water-soluble hydrocarbon components. Hence, this combines the geochemical power of IPhreeqc with the important aspects of hydrocarbon flow and compositional effects to produce a robust, flexible, and accurate integrated tool capable of including the reactions needed to mechanistically model low salinity waterflooding. The geochemical module of UTCOMP-IPhreeqc is further parallelized to enable large scale reservoir simulation applications. We hypothesize that the total ionic strength of the solution is the controlling factor of the wettability alteration due to low salinity waterflooding in sandstone reservoirs. Hence, a model based on the interpolating relative permeability and capillary pressure as a function of total ionic strength is implemented in the UTCOMP-IPhreeqc simulator. We then use our integrated simulator to match and interpret a low salinity experiment published by Kozaki (2012) (conducted on the Berea sandstone core) and the field trial done by BP at the Endicott field (sandstone reservoir). On the other hand, we believe that during the modified salinity waterflooding in carbonate reservoirs, calcite is dissolved and it liberates the adsorbed oil from the surface; hence, fresh surface with the wettability towards more water-wet is created. Therefore, we model wettability to be dynamically altered as a function of calcite dissolution in UTCOMP-IPhreeqc. We then apply our integrated simulator to model not only the oil recovery but also the entire produced ion histories of a recently published coreflood by Chandrasekhar and Mohanty (2013) on a carbonate core. We also couple IPhreeqc with UTCHEM, an in-house research chemical flooding reservoir simulator developed at The University of Texas at Austin, for a mechanistic integrated simulator to model alkaline/surfactant/polymer (ASP) floods. UTCHEM has a comprehensive three phase (water, oil, microemulsion) flash calculation package for the mixture of surfactant and soap as a function of salinity, temperature, and co-solvent concentration. Similar to UTCOMP-IPhreeqc, we parallelize the geochemical module of UTCHEM-IPhreeqc. Finally, we show how apply the integrated tool, UTCHEM-IPhreeqc, to match three different reaction-related chemical flooding processes: ASP flooding in an acidic active crude oil, ASP flooding in a non-acidic crude oil, and alkaline/co-solvent/polymer (ACP) flooding.

Reservoir Formation Damage

Reservoir Formation Damage PDF Author: Faruk Civan
Publisher: Elsevier
ISBN: 0080471439
Category : Technology & Engineering
Languages : en
Pages : 1135

Book Description
Reservoir Formation Damage, Second edition is a comprehensive treatise of the theory and modeling of common formation damage problems and is an important guide for research and development, laboratory testing for diagnosis and effective treatment, and tailor-fit- design of optimal strategies for mitigation of reservoir formation damage. The new edition includes field case histories and simulated scenarios demonstrating the consequences of formation damage in petroleum reservoirsFaruk Civan, Ph.D., is an Alumni Chair Professor in the Mewbourne School of Petroleum and Geological Engineering at the University of Oklahoma in Norman. Dr. Civan has received numerous honors and awards, including five distinguished lectureship awards and the 2003 SPE Distinguished Achievement Award for Petroleum Engineering Faculty. Petroleum engineers and managers get critical material on evaluation, prevention, and remediation of formation damage which can save or cost millions in profits from a mechanistic point of view State-of-the-Art knowledge and valuable insights into the nature of processes and operational practices causing formation damage Provides new strategies designed to minimize the impact of and avoid formation damage in petroleum reservoirs with the newest drilling, monitoring, and detection techniques

Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs

Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs PDF Author: Alireza Bahadori
Publisher: Gulf Professional Publishing
ISBN: 0128130288
Category : Technology & Engineering
Languages : en
Pages : 536

Book Description
Fundamentals of Enhanced Oil and Gas Recovery from Conventional and Unconventional Reservoirs delivers the proper foundation on all types of currently utilized and upcoming enhanced oil recovery, including methods used in emerging unconventional reservoirs. Going beyond traditional secondary methods, this reference includes advanced water-based EOR methods which are becoming more popular due to CO2 injection methods used in EOR and methods specific to target shale oil and gas activity. Rounding out with a chapter devoted to optimizing the application and economy of EOR methods, the book brings reservoir and petroleum engineers up-to-speed on the latest studies to apply. Enhanced oil recovery continues to grow in technology, and with ongoing unconventional reservoir activity underway, enhanced oil recovery methods of many kinds will continue to gain in studies and scientific advancements. Reservoir engineers currently have multiple outlets to gain knowledge and are in need of one product go-to reference. Explains enhanced oil recovery methods, focusing specifically on those used for unconventional reservoirs Includes real-world case studies and examples to further illustrate points Creates a practical and theoretical foundation with multiple contributors from various backgrounds Includes a full range of the latest and future methods for enhanced oil recovery, including chemical, waterflooding, CO2 injection and thermal