Constrained Coding and Soft Iterative Decoding PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Constrained Coding and Soft Iterative Decoding PDF full book. Access full book title Constrained Coding and Soft Iterative Decoding by John L. Fan. Download full books in PDF and EPUB format.

Constrained Coding and Soft Iterative Decoding

Constrained Coding and Soft Iterative Decoding PDF Author: John L. Fan
Publisher: Springer Science & Business Media
ISBN: 1461515254
Category : Technology & Engineering
Languages : en
Pages : 268

Book Description
Constrained Coding and Soft Iterative Decoding is the first work to combine the issues of constrained coding and soft iterative decoding (e.g., turbo and LDPC codes) from a unified point of view. Since constrained coding is widely used in magnetic and optical storage, it is necessary to use some special techniques (modified concatenation scheme or bit insertion) in order to apply soft iterative decoding. Recent breakthroughs in the design and decoding of error-control codes (ECCs) show significant potential for improving the performance of many communications systems. ECCs such as turbo codes and low-density parity check (LDPC) codes can be represented by graphs and decoded by passing probabilistic (a.k.a. `soft') messages along the edges of the graph. This message-passing algorithm yields powerful decoders whose performance can approach the theoretical limits on capacity. This exposition uses `normal graphs,' introduced by Forney, which extend in a natural manner to block diagram representations of the system and provide a simple unified framework for the decoding of ECCs, constrained codes, and channels with memory. Soft iterative decoding is illustrated by the application of turbo codes and LDPC codes to magnetic recording channels. For magnetic and optical storage, an issue arises in the use of constrained coding, which places restrictions on the sequences that can be transmitted through the channel; the use of constrained coding in combination with soft ECC decoders is addressed by the modified concatenation scheme also known as `reverse concatenation.' Moreover, a soft constraint decoder yields additional coding gain from the redundancy in the constraint, which may be of practical interest in the case of optical storage. In addition, this monograph presents several other research results (including the design of sliding-block lossless compression codes, and the decoding of array codes as LDPC codes). Constrained Coding and Soft Iterative Decoding will prove useful to students, researchers and professional engineers who are interested in understanding this new soft iterative decoding paradigm and applying it in communications and storage systems.

Low-density Parity-check Codes and Iterative Decoding Algorithms for Input-constrained Channels and Channels with Memory

Low-density Parity-check Codes and Iterative Decoding Algorithms for Input-constrained Channels and Channels with Memory PDF Author: Wongkot Vijacksungsithi
Publisher:
ISBN:
Category :
Languages : en
Pages : 454

Book Description


Constrained Coding and Soft Iterative Decoding

Constrained Coding and Soft Iterative Decoding PDF Author: John L. Fan
Publisher: Springer Science & Business Media
ISBN: 1461515254
Category : Technology & Engineering
Languages : en
Pages : 268

Book Description
Constrained Coding and Soft Iterative Decoding is the first work to combine the issues of constrained coding and soft iterative decoding (e.g., turbo and LDPC codes) from a unified point of view. Since constrained coding is widely used in magnetic and optical storage, it is necessary to use some special techniques (modified concatenation scheme or bit insertion) in order to apply soft iterative decoding. Recent breakthroughs in the design and decoding of error-control codes (ECCs) show significant potential for improving the performance of many communications systems. ECCs such as turbo codes and low-density parity check (LDPC) codes can be represented by graphs and decoded by passing probabilistic (a.k.a. `soft') messages along the edges of the graph. This message-passing algorithm yields powerful decoders whose performance can approach the theoretical limits on capacity. This exposition uses `normal graphs,' introduced by Forney, which extend in a natural manner to block diagram representations of the system and provide a simple unified framework for the decoding of ECCs, constrained codes, and channels with memory. Soft iterative decoding is illustrated by the application of turbo codes and LDPC codes to magnetic recording channels. For magnetic and optical storage, an issue arises in the use of constrained coding, which places restrictions on the sequences that can be transmitted through the channel; the use of constrained coding in combination with soft ECC decoders is addressed by the modified concatenation scheme also known as `reverse concatenation.' Moreover, a soft constraint decoder yields additional coding gain from the redundancy in the constraint, which may be of practical interest in the case of optical storage. In addition, this monograph presents several other research results (including the design of sliding-block lossless compression codes, and the decoding of array codes as LDPC codes). Constrained Coding and Soft Iterative Decoding will prove useful to students, researchers and professional engineers who are interested in understanding this new soft iterative decoding paradigm and applying it in communications and storage systems.

Capacity-approaching Coding Schemes Based on Low-density Parity-check Codes

Capacity-approaching Coding Schemes Based on Low-density Parity-check Codes PDF Author: Jilei Hou
Publisher:
ISBN:
Category :
Languages : en
Pages : 316

Book Description


Low-complexity High-speed VLSI Design of Low-density Parity-check Decoders

Low-complexity High-speed VLSI Design of Low-density Parity-check Decoders PDF Author: Zhiqiang Cui
Publisher:
ISBN:
Category : Decoders (Electronics)
Languages : en
Pages : 218

Book Description
Low-Density Parity-check (LDPC) codes have attracted considerable attention due to their capacity approaching performance over AWGN channel and highly parallelizable decoding schemes. They have been considered in a variety of industry standards for the next generation communication systems. In general, LDPC codes achieve outstanding performance with large codeword lengths (e.g., N>1000 bits), which lead to a linear increase of the size of memory for storing all the soft messages in LDPC decoding. In the next generation communication systems, the target data rates range from a few hundred Mbit/sec to several Gbit/sec. To achieve those very high decoding throughput, a large amount of computation units are required, which will significantly increase the hardware cost and power consumption of LDPC decoders. LDPC codes are decoded using iterative decoding algorithms. The decoding latency and power consumption are linearly proportional to the number of decoding iterations. A decoding approach with fast convergence speed is highly desired in practice. This thesis considers various VLSI design issues of LDPC decoder and develops efficient approaches for reducing memory requirement, low complexity implementation, and high speed decoding of LDPC codes. We propose a memory efficient partially parallel decoder architecture suited for quasi-cyclic LDPC (QC-LDPC) codes using Min-Sum decoding algorithm. We develop an efficient architecture for general permutation matrix based LDPC codes. We have explored various approaches to linearly increase the decoding throughput with a small amount of hardware overhead. We develop a multi-Gbit/sec LDPC decoder architecture for QC-LDPC codes and prototype an enhanced partially parallel decoder architecture for a Euclidian geometry based LDPC code on FPGA. We propose an early stopping scheme and an extended layered decoding method to reduce the number of decoding iterations for undecodable and decodable sequence received from channel. We also propose a low-complexity optimized 2-bit decoding approach which requires comparable implementation complexity to weighted bit flipping based algorithms but has much better decoding performance and faster convergence speed.

Generalized Low-Density Parity-Check Codes

Generalized Low-Density Parity-Check Codes PDF Author: Sherif Elsanadily
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 0

Book Description
Scientists have competed to find codes that can be decoded with optimal decoding algorithms. Generalized LDPC codes were found to compare well with such codes. LDPC codes are well treated with both types of decoding; HDD and SDD. On the other hand GLDPC codes iterative decoding, on both AWGN and BSC channels, was not sufficiently investigated in the literature. This chapter first describes its construction then discusses its iterative decoding algorithms on both channels so far. The SISO decoders, of GLDPC component codes, show excellent error performance with moderate and high code rate. However, the complexities of such decoding algorithms are very high. When the HDD BF algorithm presented to LDPC for its simplicity and speed, it was far from the BSC capacity. Therefore involving LDPC codes in optical systems using such algorithms is a wrong choice. GLDPC codes can be introduced as a good alternative of LDPC codes as their performance under BF algorithm can be improved and they would then be a competitive choice for optical communications. This chapter will discuss the iterative HDD algorithms that improve decoding error performance of GLDPC codes. SDD algorithms that maintain the performance but lowering decoding simplicity are also described.

Low-density Parity-check Codes with Reduced Decoding Complexity

Low-density Parity-check Codes with Reduced Decoding Complexity PDF Author: Benjamin Smith
Publisher:
ISBN: 9780494273289
Category :
Languages : en
Pages : 156

Book Description
This thesis presents new methods to design low-density parity-check (LDPC) codes with reduced decoding complexity. An accurate measure of iterative decoding complexity is introduced. In conjunction with extrinsic information transfer (EXIT) chart analysis, an efficient optimization program is developed, for which the complexity measure is the objective function, and its utility is demonstrated by designing LDPC codes with reduced decoding complexity. For long block lengths, codes designed by these methods match the performance of threshold-optimized codes, but reduce the decoding complexity by approximately one-third. The performance of LDPC codes is investigated when the decoder is constrained to perform a sub-optimal decoding algorithm. Due to their practical relevance, the focus is on the design of LDPC codes for quantized min-sum decoders. For such a decoder, codes designed for the sum-product algorithm are sub-optimal, and an alternative design strategy is proposed, resulting in gains of more than 0.5 dB.

Coding and Signal Processing for Magnetic Recording Systems

Coding and Signal Processing for Magnetic Recording Systems PDF Author: Bane Vasic
Publisher: CRC Press
ISBN: 0203490312
Category : Computers
Languages : en
Pages : 742

Book Description
Implementing new architectures and designs for the magnetic recording read channel have been pushed to the limits of modern integrated circuit manufacturing technology. This book reviews advanced coding and signal processing techniques and architectures for magnetic recording systems. Beginning with the basic principles, it examines read/write operations, data organization, head positioning, sensing, timing recovery, data detection, and error correction. It also provides an in-depth treatment of all recording channel subsystems inside a read channel and hard disk drive controller. The final section reviews new trends in coding, particularly emerging codes for recording channels.

Resource Efficient LDPC Decoders

Resource Efficient LDPC Decoders PDF Author: Vikram Arkalgud Chandrasetty
Publisher: Academic Press
ISBN: 0128112565
Category : Technology & Engineering
Languages : en
Pages : 192

Book Description
This book takes a practical hands-on approach to developing low complexity algorithms and transforming them into working hardware. It follows a complete design approach – from algorithms to hardware architectures - and addresses some of the challenges associated with their design, providing insight into implementing innovative architectures based on low complexity algorithms.The reader will learn: - Modern techniques to design, model and analyze low complexity LDPC algorithms as well as their hardware implementation - How to reduce computational complexity and power consumption using computer aided design techniques - All aspects of the design spectrum from algorithms to hardware implementation and performance trade-offs - Provides extensive treatment of LDPC decoding algorithms and hardware implementations - Gives a systematic guidance, giving a basic understanding of LDPC codes and decoding algorithms and providing practical skills in implementing efficient LDPC decoders in hardware - Companion website containing C-Programs and MATLAB models for simulating the algorithms, and Verilog HDL codes for hardware modeling and synthesis

Low Density Parity Check Code for Next Generation Communication System

Low Density Parity Check Code for Next Generation Communication System PDF Author: Mayank Ardeshana
Publisher: LAP Lambert Academic Publishing
ISBN: 9783845420417
Category :
Languages : en
Pages : 72

Book Description
Channel coding provides the means of patterning signals so as to reduce their energy or bandwidth consumption for a given error performance. LDPC codes have been shown to have good error correcting performance which enables efficient and reliable communication. LDPC codes have linear decoding complexity but performance approaching close to shannon capacity with iterative probabilistic decoding algorithm. In this dissertation, the performance of different error correcting code such as convolution, Reed Solomon(RS), hamming, block code are evaluated based on different parameters like code rate, bit error rate (BER), Eb/No, complexity, coding gain and compare with LDPC code. In general, message passing algorithm and the sum-product algorithm are used to decode the message. We showed that logarithmic sum-product algorithm with long block length code reduces multiplication to addition by introducing logarithmic likelihood ratio so that it achieves the highest BER performance among all the decoding algorithms. The astonishing performance combined with proposed modified MS decoding algorithm make these codes very attractive for the next generations digital broadcasting system (ABS - S).

Construction, Decoding and Application of Low-density Parity-check Codes

Construction, Decoding and Application of Low-density Parity-check Codes PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In this doctoral dissertation, a construction of binary and nonbinary low-density parity-check (LDPC) codes with quasi-cyclic (QC) structures is presented. First, a general construction of RC-constrained arrays of circulant permutation matrices is introduced, then a specific construction method based on additive subgroups of finite fields is presented. Array masking is also proposed to improve the waterfall-region performance of the QC-LDPC codes, where an algorithm to construct irregular masking matrices is introduced for low error floors. Simulations show that all the above-constructed codes perform well on AWGN channels. Also presented in this dissertation is an LDPC-based error control scheme in a multicast network where a well-known network coding is used. With this scheme, error performance of the system can be improved and equal error protection can be achieved. Finally, an iterative decoding with backtracking is presented. This decoding algorithm greatly lowers the error floors of many regular and irregular LDPC codes of different constructions, and in many cases can push the error floors down to a level limited by the codes' minimum distances. Performance analysis and error floor estimation for the proposed algorithm are also performed.