Author: Yanni Chen
Publisher:
ISBN:
Category :
Languages : en
Pages : 294
Book Description
Low Complexity, High Speed VLSI Architectures for Error Correction Decoders
VLSI Architectures for Modern Error-Correcting Codes
Author: Xinmiao Zhang
Publisher: CRC Press
ISBN: 1351831224
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
Error-correcting codes are ubiquitous. They are adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probing. New-generation and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity. VLSI Architectures for Modern Error-Correcting Codes serves as a bridge connecting advancements in coding theory to practical hardware implementations. Instead of focusing on circuit-level design techniques, the book highlights integrated algorithmic and architectural transformations that lead to great improvements on throughput, silicon area requirement, and/or power consumption in the hardware implementation. The goal of this book is to provide a comprehensive and systematic review of available techniques and architectures, so that they can be easily followed by system and hardware designers to develop en/decoder implementations that meet error-correcting performance and cost requirements. This book can be also used as a reference for graduate-level courses on VLSI design and error-correcting coding. Particular emphases are placed on hard- and soft-decision Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) codes, and binary and non-binary low-density parity-check (LDPC) codes. These codes are among the best candidates for modern and emerging applications due to their good error-correcting performance and lower implementation complexity compared to other codes. To help explain the computations and en/decoder architectures, many examples and case studies are included. More importantly, discussions are provided on the advantages and drawbacks of different implementation approaches and architectures.
Publisher: CRC Press
ISBN: 1351831224
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
Error-correcting codes are ubiquitous. They are adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probing. New-generation and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity. VLSI Architectures for Modern Error-Correcting Codes serves as a bridge connecting advancements in coding theory to practical hardware implementations. Instead of focusing on circuit-level design techniques, the book highlights integrated algorithmic and architectural transformations that lead to great improvements on throughput, silicon area requirement, and/or power consumption in the hardware implementation. The goal of this book is to provide a comprehensive and systematic review of available techniques and architectures, so that they can be easily followed by system and hardware designers to develop en/decoder implementations that meet error-correcting performance and cost requirements. This book can be also used as a reference for graduate-level courses on VLSI design and error-correcting coding. Particular emphases are placed on hard- and soft-decision Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) codes, and binary and non-binary low-density parity-check (LDPC) codes. These codes are among the best candidates for modern and emerging applications due to their good error-correcting performance and lower implementation complexity compared to other codes. To help explain the computations and en/decoder architectures, many examples and case studies are included. More importantly, discussions are provided on the advantages and drawbacks of different implementation approaches and architectures.
VLSI Architectures for Modern Error-Correcting Codes
Author: Xinmiao Zhang
Publisher: CRC Press
ISBN: 148222965X
Category : Technology & Engineering
Languages : en
Pages : 410
Book Description
Error-correcting codes are ubiquitous. They are adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probing. New-generation and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity. VLSI Architectures for Modern Error-Correcting Codes serves as a bridge connecting advancements in coding theory to practical hardware implementations. Instead of focusing on circuit-level design techniques, the book highlights integrated algorithmic and architectural transformations that lead to great improvements on throughput, silicon area requirement, and/or power consumption in the hardware implementation. The goal of this book is to provide a comprehensive and systematic review of available techniques and architectures, so that they can be easily followed by system and hardware designers to develop en/decoder implementations that meet error-correcting performance and cost requirements. This book can be also used as a reference for graduate-level courses on VLSI design and error-correcting coding. Particular emphases are placed on hard- and soft-decision Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) codes, and binary and non-binary low-density parity-check (LDPC) codes. These codes are among the best candidates for modern and emerging applications due to their good error-correcting performance and lower implementation complexity compared to other codes. To help explain the computations and en/decoder architectures, many examples and case studies are included. More importantly, discussions are provided on the advantages and drawbacks of different implementation approaches and architectures.
Publisher: CRC Press
ISBN: 148222965X
Category : Technology & Engineering
Languages : en
Pages : 410
Book Description
Error-correcting codes are ubiquitous. They are adopted in almost every modern digital communication and storage system, such as wireless communications, optical communications, Flash memories, computer hard drives, sensor networks, and deep-space probing. New-generation and emerging applications demand codes with better error-correcting capability. On the other hand, the design and implementation of those high-gain error-correcting codes pose many challenges. They usually involve complex mathematical computations, and mapping them directly to hardware often leads to very high complexity. VLSI Architectures for Modern Error-Correcting Codes serves as a bridge connecting advancements in coding theory to practical hardware implementations. Instead of focusing on circuit-level design techniques, the book highlights integrated algorithmic and architectural transformations that lead to great improvements on throughput, silicon area requirement, and/or power consumption in the hardware implementation. The goal of this book is to provide a comprehensive and systematic review of available techniques and architectures, so that they can be easily followed by system and hardware designers to develop en/decoder implementations that meet error-correcting performance and cost requirements. This book can be also used as a reference for graduate-level courses on VLSI design and error-correcting coding. Particular emphases are placed on hard- and soft-decision Reed-Solomon (RS) and Bose-Chaudhuri-Hocquenghem (BCH) codes, and binary and non-binary low-density parity-check (LDPC) codes. These codes are among the best candidates for modern and emerging applications due to their good error-correcting performance and lower implementation complexity compared to other codes. To help explain the computations and en/decoder architectures, many examples and case studies are included. More importantly, discussions are provided on the advantages and drawbacks of different implementation approaches and architectures.
High Performance, High Speed VLSI Architectures for Wireless Communication Applications
Fundamentals of Classical and Modern Error-Correcting Codes
Author: Shu Lin
Publisher: Cambridge University Press
ISBN: 1316512622
Category : Computers
Languages : en
Pages : 843
Book Description
An accessible textbook that uses step-by-step explanations, relatively easy mathematics and numerous examples to aid student understanding.
Publisher: Cambridge University Press
ISBN: 1316512622
Category : Computers
Languages : en
Pages : 843
Book Description
An accessible textbook that uses step-by-step explanations, relatively easy mathematics and numerous examples to aid student understanding.
High-speed VLSI Architectures for Error-correcting Codes and Cryptosystems
Advanced Hardware Design for Error Correcting Codes
Author: Cyrille Chavet
Publisher: Springer
ISBN: 3319105698
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques. Advanced Hardware Design for Error Correcting Codes includes a foreword by Claude Berrou.
Publisher: Springer
ISBN: 3319105698
Category : Technology & Engineering
Languages : en
Pages : 197
Book Description
This book provides thorough coverage of error correcting techniques. It includes essential basic concepts and the latest advances on key topics in design, implementation, and optimization of hardware/software systems for error correction. The book’s chapters are written by internationally recognized experts in this field. Topics include evolution of error correction techniques, industrial user needs, architectures, and design approaches for the most advanced error correcting codes (Polar Codes, Non-Binary LDPC, Product Codes, etc). This book provides access to recent results, and is suitable for graduate students and researchers of mathematics, computer science, and engineering. • Examines how to optimize the architecture of hardware design for error correcting codes; • Presents error correction codes from theory to optimized architecture for the current and the next generation standards; • Provides coverage of industrial user needs advanced error correcting techniques. Advanced Hardware Design for Error Correcting Codes includes a foreword by Claude Berrou.
VLSI
Author: Zhongfeng Wang
Publisher: BoD – Books on Demand
ISBN: 9533070498
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
The process of Integrated Circuits (IC) started its era of VLSI (Very Large Scale Integration) in 1970’s when thousands of transistors were integrated into one single chip. Nowadays we are able to integrate more than a billion transistors on a single chip. However, the term “VLSI” is still being used, though there was some effort to coin a new term ULSI (Ultra-Large Scale Integration) for fine distinctions many years ago. VLSI technology has brought tremendous benefits to our everyday life since its occurrence. VLSI circuits are used everywhere, real applications include microprocessors in a personal computer or workstation, chips in a graphic card, digital camera or camcorder, chips in a cell phone or a portable computing device, and embedded processors in an automobile, et al. VLSI covers many phases of design and fabrication of integrated circuits. For a commercial chip design, it involves system definition, VLSI architecture design and optimization, RTL (register transfer language) coding, (pre- and post-synthesis) simulation and verification, synthesis, place and route, timing analyses and timing closure, and multi-step semiconductor device fabrication including wafer processing, die preparation, IC packaging and testing, et al. As the process technology scales down, hundreds or even thousands of millions of transistors are integrated into one single chip. Hence, more and more complicated systems can be integrated into a single chip, the so-called System-on-chip (SoC), which brings to VLSI engineers ever increasingly challenges to master techniques in various phases of VLSI design. For modern SoC design, practical applications are usually speed hungry. For instance, Ethernet standard has evolved from 10Mbps to 10Gbps. Now the specification for 100Mbps Ethernet is on the way. On the other hand, with the popularity of wireless and portable computing devices, low power consumption has become extremely critical. To meet these contradicting requirements, VLSI designers have to perform optimizations at all levels of design. This book is intended to cover a wide range of VLSI design topics. The book can be roughly partitioned into four parts. Part I is mainly focused on algorithmic level and architectural level VLSI design and optimization for image and video signal processing systems. Part II addresses VLSI design optimizations for cryptography and error correction coding. Part III discusses general SoC design techniques as well as other application-specific VLSI design optimizations. The last part will cover generic nano-scale circuit-level design techniques.
Publisher: BoD – Books on Demand
ISBN: 9533070498
Category : Technology & Engineering
Languages : en
Pages : 467
Book Description
The process of Integrated Circuits (IC) started its era of VLSI (Very Large Scale Integration) in 1970’s when thousands of transistors were integrated into one single chip. Nowadays we are able to integrate more than a billion transistors on a single chip. However, the term “VLSI” is still being used, though there was some effort to coin a new term ULSI (Ultra-Large Scale Integration) for fine distinctions many years ago. VLSI technology has brought tremendous benefits to our everyday life since its occurrence. VLSI circuits are used everywhere, real applications include microprocessors in a personal computer or workstation, chips in a graphic card, digital camera or camcorder, chips in a cell phone or a portable computing device, and embedded processors in an automobile, et al. VLSI covers many phases of design and fabrication of integrated circuits. For a commercial chip design, it involves system definition, VLSI architecture design and optimization, RTL (register transfer language) coding, (pre- and post-synthesis) simulation and verification, synthesis, place and route, timing analyses and timing closure, and multi-step semiconductor device fabrication including wafer processing, die preparation, IC packaging and testing, et al. As the process technology scales down, hundreds or even thousands of millions of transistors are integrated into one single chip. Hence, more and more complicated systems can be integrated into a single chip, the so-called System-on-chip (SoC), which brings to VLSI engineers ever increasingly challenges to master techniques in various phases of VLSI design. For modern SoC design, practical applications are usually speed hungry. For instance, Ethernet standard has evolved from 10Mbps to 10Gbps. Now the specification for 100Mbps Ethernet is on the way. On the other hand, with the popularity of wireless and portable computing devices, low power consumption has become extremely critical. To meet these contradicting requirements, VLSI designers have to perform optimizations at all levels of design. This book is intended to cover a wide range of VLSI design topics. The book can be roughly partitioned into four parts. Part I is mainly focused on algorithmic level and architectural level VLSI design and optimization for image and video signal processing systems. Part II addresses VLSI design optimizations for cryptography and error correction coding. Part III discusses general SoC design techniques as well as other application-specific VLSI design optimizations. The last part will cover generic nano-scale circuit-level design techniques.
The VLSI Handbook
Author: Wai-Kai Chen
Publisher: CRC Press
ISBN: 1420005960
Category : Technology & Engineering
Languages : en
Pages : 2322
Book Description
For the new millenium, Wai-Kai Chen introduced a monumental reference for the design, analysis, and prediction of VLSI circuits: The VLSI Handbook. Still a valuable tool for dealing with the most dynamic field in engineering, this second edition includes 13 sections comprising nearly 100 chapters focused on the key concepts, models, and equations. Written by a stellar international panel of expert contributors, this handbook is a reliable, comprehensive resource for real answers to practical problems. It emphasizes fundamental theory underlying professional applications and also reflects key areas of industrial and research focus. WHAT'S IN THE SECOND EDITION? Sections on... Low-power electronics and design VLSI signal processing Chapters on... CMOS fabrication Content-addressable memory Compound semiconductor RF circuits High-speed circuit design principles SiGe HBT technology Bipolar junction transistor amplifiers Performance modeling and analysis using SystemC Design languages, expanded from two chapters to twelve Testing of digital systems Structured for convenient navigation and loaded with practical solutions, The VLSI Handbook, Second Edition remains the first choice for answers to the problems and challenges faced daily in engineering practice.
Publisher: CRC Press
ISBN: 1420005960
Category : Technology & Engineering
Languages : en
Pages : 2322
Book Description
For the new millenium, Wai-Kai Chen introduced a monumental reference for the design, analysis, and prediction of VLSI circuits: The VLSI Handbook. Still a valuable tool for dealing with the most dynamic field in engineering, this second edition includes 13 sections comprising nearly 100 chapters focused on the key concepts, models, and equations. Written by a stellar international panel of expert contributors, this handbook is a reliable, comprehensive resource for real answers to practical problems. It emphasizes fundamental theory underlying professional applications and also reflects key areas of industrial and research focus. WHAT'S IN THE SECOND EDITION? Sections on... Low-power electronics and design VLSI signal processing Chapters on... CMOS fabrication Content-addressable memory Compound semiconductor RF circuits High-speed circuit design principles SiGe HBT technology Bipolar junction transistor amplifiers Performance modeling and analysis using SystemC Design languages, expanded from two chapters to twelve Testing of digital systems Structured for convenient navigation and loaded with practical solutions, The VLSI Handbook, Second Edition remains the first choice for answers to the problems and challenges faced daily in engineering practice.
Coding Theory
Author: Andre Neubauer
Publisher: John Wiley & Sons
ISBN: 9780470519820
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
One of the most important key technologies for digital communication systems as well as storage media is coding theory. It provides a means to transmit information across time and space over noisy and unreliable communication channels. Coding Theory: Algorithms, Architectures and Applications provides a concise overview of channel coding theory and practice, as well as the accompanying signal processing architectures. The book is unique in presenting algorithms, architectures, and applications of coding theory in a unified framework. It covers the basics of coding theory before moving on to discuss algebraic linear block and cyclic codes, turbo codes and low density parity check codes and space-time codes. Coding Theory provides algorithms and architectures used for implementing coding and decoding strategies as well as coding schemes used in practice especially in communication systems. Feature of the book include: Unique presentation-like style for summarising main aspects Practical issues for implementation of coding techniques Sound theoretical approach to practical, relevant coding methodologies Covers standard coding schemes such as block and convolutional codes, coding schemes such as Turbo and LDPC codes, and space time codes currently in research, all covered in a common framework with respect to their applications. This book is ideal for postgraduate and undergraduate students of communication and information engineering, as well as computer science students. It will also be of use to engineers working in the industry who want to know more about the theoretical basics of coding theory and their application in currently relevant communication systems
Publisher: John Wiley & Sons
ISBN: 9780470519820
Category : Technology & Engineering
Languages : en
Pages : 362
Book Description
One of the most important key technologies for digital communication systems as well as storage media is coding theory. It provides a means to transmit information across time and space over noisy and unreliable communication channels. Coding Theory: Algorithms, Architectures and Applications provides a concise overview of channel coding theory and practice, as well as the accompanying signal processing architectures. The book is unique in presenting algorithms, architectures, and applications of coding theory in a unified framework. It covers the basics of coding theory before moving on to discuss algebraic linear block and cyclic codes, turbo codes and low density parity check codes and space-time codes. Coding Theory provides algorithms and architectures used for implementing coding and decoding strategies as well as coding schemes used in practice especially in communication systems. Feature of the book include: Unique presentation-like style for summarising main aspects Practical issues for implementation of coding techniques Sound theoretical approach to practical, relevant coding methodologies Covers standard coding schemes such as block and convolutional codes, coding schemes such as Turbo and LDPC codes, and space time codes currently in research, all covered in a common framework with respect to their applications. This book is ideal for postgraduate and undergraduate students of communication and information engineering, as well as computer science students. It will also be of use to engineers working in the industry who want to know more about the theoretical basics of coding theory and their application in currently relevant communication systems