Author: Michael Huth
Publisher:
ISBN: 9780521543101
Category : Computers
Languages : en
Pages : 427
Book Description
Provides a sound basis in logic, and introduces logical frameworks used in modelling, specifying and verifying computer systems.
Logic in Computer Science
Author: Michael Huth
Publisher:
ISBN: 9780521543101
Category : Computers
Languages : en
Pages : 427
Book Description
Provides a sound basis in logic, and introduces logical frameworks used in modelling, specifying and verifying computer systems.
Publisher:
ISBN: 9780521543101
Category : Computers
Languages : en
Pages : 427
Book Description
Provides a sound basis in logic, and introduces logical frameworks used in modelling, specifying and verifying computer systems.
Essential Logic for Computer Science
Author: Rex Page
Publisher: MIT Press
ISBN: 0262039184
Category : Computers
Languages : en
Pages : 305
Book Description
An introduction to applying predicate logic to testing and verification of software and digital circuits that focuses on applications rather than theory. Computer scientists use logic for testing and verification of software and digital circuits, but many computer science students study logic only in the context of traditional mathematics, encountering the subject in a few lectures and a handful of problem sets in a discrete math course. This book offers a more substantive and rigorous approach to logic that focuses on applications in computer science. Topics covered include predicate logic, equation-based software, automated testing and theorem proving, and large-scale computation. Formalism is emphasized, and the book employs three formal notations: traditional algebraic formulas of propositional and predicate logic; digital circuit diagrams; and the widely used partially automated theorem prover, ACL2, which provides an accessible introduction to mechanized formalism. For readers who want to see formalization in action, the text presents examples using Proof Pad, a lightweight ACL2 environment. Readers will not become ALC2 experts, but will learn how mechanized logic can benefit software and hardware engineers. In addition, 180 exercises, some of them extremely challenging, offer opportunities for problem solving. There are no prerequisites beyond high school algebra. Programming experience is not required to understand the book's equation-based approach. The book can be used in undergraduate courses in logic for computer science and introduction to computer science and in math courses for computer science students.
Publisher: MIT Press
ISBN: 0262039184
Category : Computers
Languages : en
Pages : 305
Book Description
An introduction to applying predicate logic to testing and verification of software and digital circuits that focuses on applications rather than theory. Computer scientists use logic for testing and verification of software and digital circuits, but many computer science students study logic only in the context of traditional mathematics, encountering the subject in a few lectures and a handful of problem sets in a discrete math course. This book offers a more substantive and rigorous approach to logic that focuses on applications in computer science. Topics covered include predicate logic, equation-based software, automated testing and theorem proving, and large-scale computation. Formalism is emphasized, and the book employs three formal notations: traditional algebraic formulas of propositional and predicate logic; digital circuit diagrams; and the widely used partially automated theorem prover, ACL2, which provides an accessible introduction to mechanized formalism. For readers who want to see formalization in action, the text presents examples using Proof Pad, a lightweight ACL2 environment. Readers will not become ALC2 experts, but will learn how mechanized logic can benefit software and hardware engineers. In addition, 180 exercises, some of them extremely challenging, offer opportunities for problem solving. There are no prerequisites beyond high school algebra. Programming experience is not required to understand the book's equation-based approach. The book can be used in undergraduate courses in logic for computer science and introduction to computer science and in math courses for computer science students.
Logic for Computer Scientists
Author: Uwe Schöning
Publisher: Springer Science & Business Media
ISBN: 0817647635
Category : Mathematics
Languages : en
Pages : 173
Book Description
This book introduces the notions and methods of formal logic from a computer science standpoint, covering propositional logic, predicate logic, and foundations of logic programming. The classic text is replete with illustrative examples and exercises. It presents applications and themes of computer science research such as resolution, automated deduction, and logic programming in a rigorous but readable way. The style and scope of the work, rounded out by the inclusion of exercises, make this an excellent textbook for an advanced undergraduate course in logic for computer scientists.
Publisher: Springer Science & Business Media
ISBN: 0817647635
Category : Mathematics
Languages : en
Pages : 173
Book Description
This book introduces the notions and methods of formal logic from a computer science standpoint, covering propositional logic, predicate logic, and foundations of logic programming. The classic text is replete with illustrative examples and exercises. It presents applications and themes of computer science research such as resolution, automated deduction, and logic programming in a rigorous but readable way. The style and scope of the work, rounded out by the inclusion of exercises, make this an excellent textbook for an advanced undergraduate course in logic for computer scientists.
Logic for Computer Science
Author: Jean H. Gallier
Publisher: Courier Dover Publications
ISBN: 0486780821
Category : Mathematics
Languages : en
Pages : 532
Book Description
This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.
Publisher: Courier Dover Publications
ISBN: 0486780821
Category : Mathematics
Languages : en
Pages : 532
Book Description
This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.
Mathematical Logic for Computer Science
Author: Mordechai Ben-Ari
Publisher: Springer Science & Business Media
ISBN: 1447103351
Category : Computers
Languages : en
Pages : 311
Book Description
This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.
Publisher: Springer Science & Business Media
ISBN: 1447103351
Category : Computers
Languages : en
Pages : 311
Book Description
This is a mathematics textbook with theorems and proofs. The choice of topics has been guided by the needs of computer science students. The method of semantic tableaux provides an elegant way to teach logic that is both theoretically sound and yet sufficiently elementary for undergraduates. In order to provide a balanced treatment of logic, tableaux are related to deductive proof systems. The book presents various logical systems and contains exercises. Still further, Prolog source code is available on an accompanying Web site. The author is an Associate Professor at the Department of Science Teaching, Weizmann Institute of Science.
Logic for Mathematics and Computer Science
Author: Stanley Burris
Publisher: Upper Saddle River, N.J. : Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 456
Book Description
This text is intended for one semester courses in Logic, it can also be applied to a two semester course, in either Computer Science or Mathematics Departments. Unlike other texts on mathematical logic that are either too advanced, too sparse in examples or exercises, too traditional in coverage, or too philosophical in approach, this text provides an elementary "hands-on" presentation of important mathematical logic topics, new and old, that is readily accessible and relevant to all students of the mathematical sciences -- not just those in traditional pure mathematics.
Publisher: Upper Saddle River, N.J. : Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 456
Book Description
This text is intended for one semester courses in Logic, it can also be applied to a two semester course, in either Computer Science or Mathematics Departments. Unlike other texts on mathematical logic that are either too advanced, too sparse in examples or exercises, too traditional in coverage, or too philosophical in approach, this text provides an elementary "hands-on" presentation of important mathematical logic topics, new and old, that is readily accessible and relevant to all students of the mathematical sciences -- not just those in traditional pure mathematics.
Logics for Computer Science
Author: Anita Wasilewska
Publisher: Springer
ISBN: 3319925911
Category : Computers
Languages : en
Pages : 540
Book Description
Providing an in-depth introduction to fundamental classical and non-classical logics, this textbook offers a comprehensive survey of logics for computer scientists. Logics for Computer Science contains intuitive introductory chapters explaining the need for logical investigations, motivations for different types of logics and some of their history. They are followed by strict formal approach chapters. All chapters contain many detailed examples explaining each of the introduced notions and definitions, well chosen sets of exercises with carefully written solutions, and sets of homework. While many logic books are available, they were written by logicians for logicians, not for computer scientists. They usually choose one particular way of presenting the material and use a specialized language. Logics for Computer Science discusses Gentzen as well as Hilbert formalizations, first order theories, the Hilbert Program, Godel's first and second incompleteness theorems and their proofs. It also introduces and discusses some many valued logics, modal logics and introduces algebraic models for classical, intuitionistic, and modal S4 and S5 logics. The theory of computation is based on concepts defined by logicians and mathematicians. Logic plays a fundamental role in computer science, and this book explains the basic theorems, as well as different techniques of proving them in classical and some non-classical logics. Important applications derived from concepts of logic for computer technology include Artificial Intelligence and Software Engineering. In addition to Computer Science, this book may also find an audience in mathematics and philosophy courses, and some of the chapters are also useful for a course in Artificial Intelligence.
Publisher: Springer
ISBN: 3319925911
Category : Computers
Languages : en
Pages : 540
Book Description
Providing an in-depth introduction to fundamental classical and non-classical logics, this textbook offers a comprehensive survey of logics for computer scientists. Logics for Computer Science contains intuitive introductory chapters explaining the need for logical investigations, motivations for different types of logics and some of their history. They are followed by strict formal approach chapters. All chapters contain many detailed examples explaining each of the introduced notions and definitions, well chosen sets of exercises with carefully written solutions, and sets of homework. While many logic books are available, they were written by logicians for logicians, not for computer scientists. They usually choose one particular way of presenting the material and use a specialized language. Logics for Computer Science discusses Gentzen as well as Hilbert formalizations, first order theories, the Hilbert Program, Godel's first and second incompleteness theorems and their proofs. It also introduces and discusses some many valued logics, modal logics and introduces algebraic models for classical, intuitionistic, and modal S4 and S5 logics. The theory of computation is based on concepts defined by logicians and mathematicians. Logic plays a fundamental role in computer science, and this book explains the basic theorems, as well as different techniques of proving them in classical and some non-classical logics. Important applications derived from concepts of logic for computer technology include Artificial Intelligence and Software Engineering. In addition to Computer Science, this book may also find an audience in mathematics and philosophy courses, and some of the chapters are also useful for a course in Artificial Intelligence.
Logic for Computer Science and Artificial Intelligence
Author: Ricardo Caferra
Publisher: John Wiley & Sons
ISBN: 1118604261
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Logic and its components (propositional, first-order, non-classical) play a key role in Computer Science and Artificial Intelligence. While a large amount of information exists scattered throughout various media (books, journal articles, webpages, etc.), the diffuse nature of these sources is problematic and logic as a topic benefits from a unified approach. Logic for Computer Science and Artificial Intelligence utilizes this format, surveying the tableaux, resolution, Davis and Putnam methods, logic programming, as well as for example unification and subsumption. For non-classical logics, the translation method is detailed. Logic for Computer Science and Artificial Intelligence is the classroom-tested result of several years of teaching at Grenoble INP (Ensimag). It is conceived to allow self-instruction for a beginner with basic knowledge in Mathematics and Computer Science, but is also highly suitable for use in traditional courses. The reader is guided by clearly motivated concepts, introductions, historical remarks, side notes concerning connections with other disciplines, and numerous exercises, complete with detailed solutions, The title provides the reader with the tools needed to arrive naturally at practical implementations of the concepts and techniques discussed, allowing for the design of algorithms to solve problems.
Publisher: John Wiley & Sons
ISBN: 1118604261
Category : Technology & Engineering
Languages : en
Pages : 378
Book Description
Logic and its components (propositional, first-order, non-classical) play a key role in Computer Science and Artificial Intelligence. While a large amount of information exists scattered throughout various media (books, journal articles, webpages, etc.), the diffuse nature of these sources is problematic and logic as a topic benefits from a unified approach. Logic for Computer Science and Artificial Intelligence utilizes this format, surveying the tableaux, resolution, Davis and Putnam methods, logic programming, as well as for example unification and subsumption. For non-classical logics, the translation method is detailed. Logic for Computer Science and Artificial Intelligence is the classroom-tested result of several years of teaching at Grenoble INP (Ensimag). It is conceived to allow self-instruction for a beginner with basic knowledge in Mathematics and Computer Science, but is also highly suitable for use in traditional courses. The reader is guided by clearly motivated concepts, introductions, historical remarks, side notes concerning connections with other disciplines, and numerous exercises, complete with detailed solutions, The title provides the reader with the tools needed to arrive naturally at practical implementations of the concepts and techniques discussed, allowing for the design of algorithms to solve problems.
Introduction to Logic, Second Edition
Author: Genesereth Michael
Publisher: Springer Nature
ISBN: 3031017994
Category : Mathematics
Languages : en
Pages : 155
Book Description
This book is a gentle but rigorous introduction to Formal Logic. It is intended primarily for use at the college level. However, it can also be used for advanced secondary school students, and it can be used at the start of graduate school for those who have not yet seen the material. The approach to teaching logic used here emerged from more than 20 years of teaching logic to students at Stanford University and from teaching logic to tens of thousands of others via online courses on the World Wide Web. The approach differs from that taken by other books in logic in two essential ways, one having to do with content, the other with form. Like many other books on logic, this one covers logical syntax and semantics and proof theory plus induction. However, unlike other books, this book begins with Herbrand semantics rather than the more traditional Tarskian semantics. This approach makes the material considerably easier for students to understand and leaves them with a deeper understanding of what logic is all about. In addition to this text, there are online exercises (with automated grading), online logic tools and applications, online videos of lectures, and an online forum for discussion. They are available at logic.stanford.edu/intrologic/
Publisher: Springer Nature
ISBN: 3031017994
Category : Mathematics
Languages : en
Pages : 155
Book Description
This book is a gentle but rigorous introduction to Formal Logic. It is intended primarily for use at the college level. However, it can also be used for advanced secondary school students, and it can be used at the start of graduate school for those who have not yet seen the material. The approach to teaching logic used here emerged from more than 20 years of teaching logic to students at Stanford University and from teaching logic to tens of thousands of others via online courses on the World Wide Web. The approach differs from that taken by other books in logic in two essential ways, one having to do with content, the other with form. Like many other books on logic, this one covers logical syntax and semantics and proof theory plus induction. However, unlike other books, this book begins with Herbrand semantics rather than the more traditional Tarskian semantics. This approach makes the material considerably easier for students to understand and leaves them with a deeper understanding of what logic is all about. In addition to this text, there are online exercises (with automated grading), online logic tools and applications, online videos of lectures, and an online forum for discussion. They are available at logic.stanford.edu/intrologic/
Sets, Logic and Maths for Computing
Author: David Makinson
Publisher: Springer Science & Business Media
ISBN: 1447125002
Category : Computers
Languages : en
Pages : 302
Book Description
This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.
Publisher: Springer Science & Business Media
ISBN: 1447125002
Category : Computers
Languages : en
Pages : 302
Book Description
This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.