Author: Anil Nerode
Publisher: Springer Science & Business Media
ISBN: 1468402110
Category : Computers
Languages : en
Pages : 383
Book Description
In writing this book, our goal was to produce a text suitable for a first course in mathematical logic more attuned than the traditional textbooks to the recent dramatic growth in the applications of logic to computer science. Thus our choice of topics has been heavily influenced by such applications. Of course, we cover the basic traditional topics - syntax, semantics, soundness, completeness and compactness - as well as a few more advanced results such as the theorems of Skolem-Lowenheim and Herbrand. Much of our book, however, deals with other less traditional topics. Resolution theorem proving plays a major role in our treatment of logic, especially in its application to Logic Programming and PROLOG. We deal extensively with the mathematical foundations of all three of these subjects. In addition, we include two chapters on nonclassical logic- modal and intuitionistic - that are becoming increasingly important in computer science. We develop the basic material on the syntax and se mantics (via Kripke frames) for each of these logics. In both cases, our approach to formal proofs, soundness and completeness uses modifications of the same tableau method introduced for classical logic. We indicate how it can easily be adapted to various other special types of modal log ics. A number of more advanced topics (including nonmonotonic logic) are also briefly introduced both in the nonclassical logic chapters and in the material on Logic Programming and PROLOG.
Logic for Applications
Logic and Its Applications
Author: Edmund Burke
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 336
Book Description
This book is an introduction to mathematical logic and its application to the field of computer science. Starting with the first principles of logic, the theory is reinforced by detailed applications.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 336
Book Description
This book is an introduction to mathematical logic and its application to the field of computer science. Starting with the first principles of logic, the theory is reinforced by detailed applications.
Mathematical Logic
Author: Jean E. Rubin
Publisher: Harcourt Brace College Publishers
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 448
Book Description
Publisher: Harcourt Brace College Publishers
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 448
Book Description
Introduction to Symbolic Logic and Its Applications
Author: Rudolf Carnap
Publisher: Courier Corporation
ISBN: 048614349X
Category : Mathematics
Languages : en
Pages : 280
Book Description
Clear, comprehensive, and rigorous treatment develops the subject from elementary concepts to the construction and analysis of relatively complex logical languages. Hundreds of problems, examples, and exercises. 1958 edition.
Publisher: Courier Corporation
ISBN: 048614349X
Category : Mathematics
Languages : en
Pages : 280
Book Description
Clear, comprehensive, and rigorous treatment develops the subject from elementary concepts to the construction and analysis of relatively complex logical languages. Hundreds of problems, examples, and exercises. 1958 edition.
Introduction to Mathematical Logic
Author: Elliot Mendelsohn
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Publisher: Springer Science & Business Media
ISBN: 1461572886
Category : Science
Languages : en
Pages : 351
Book Description
This is a compact mtroduction to some of the pnncipal tOpICS of mathematical logic . In the belief that beginners should be exposed to the most natural and easiest proofs, I have used free-swinging set-theoretic methods. The significance of a demand for constructive proofs can be evaluated only after a certain amount of experience with mathematical logic has been obtained. If we are to be expelled from "Cantor's paradise" (as nonconstructive set theory was called by Hilbert), at least we should know what we are missing. The major changes in this new edition are the following. (1) In Chapter 5, Effective Computability, Turing-computabIlity IS now the central notion, and diagrams (flow-charts) are used to construct Turing machines. There are also treatments of Markov algorithms, Herbrand-Godel-computability, register machines, and random access machines. Recursion theory is gone into a little more deeply, including the s-m-n theorem, the recursion theorem, and Rice's Theorem. (2) The proofs of the Incompleteness Theorems are now based upon the Diagonalization Lemma. Lob's Theorem and its connection with Godel's Second Theorem are also studied. (3) In Chapter 2, Quantification Theory, Henkin's proof of the completeness theorem has been postponed until the reader has gained more experience in proof techniques. The exposition of the proof itself has been improved by breaking it down into smaller pieces and using the notion of a scapegoat theory. There is also an entirely new section on semantic trees.
Paraconsistency: Logic and Applications
Author: Koji Tanaka
Publisher: Springer Science & Business Media
ISBN: 9400744382
Category : Philosophy
Languages : en
Pages : 380
Book Description
A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more "big picture" ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics.
Publisher: Springer Science & Business Media
ISBN: 9400744382
Category : Philosophy
Languages : en
Pages : 380
Book Description
A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change this situation. The book includes almost every major author currently working in the field. The papers are on the cutting edge of the literature some of which discuss current debates and others present important new ideas. The editors have avoided papers about technical details of paraconsistent logic, but instead concentrated upon works that discuss more "big picture" ideas. Different treatments of paradoxes takes centre stage in many of the papers, but also there are several papers on how to interpret paraconistent logic and some on how it can be applied to philosophy of mathematics, the philosophy of language, and metaphysics.
The Application of Logic
Author: Alfred Sidgwick
Publisher:
ISBN:
Category : Logic
Languages : en
Pages : 348
Book Description
Publisher:
ISBN:
Category : Logic
Languages : en
Pages : 348
Book Description
Declarative Logic Programming
Author: Michael Kifer
Publisher: ACM Books
ISBN: 9781970001969
Category :
Languages : en
Pages : 615
Book Description
The idea of this book grew out of a symposium that was held at Stony Brook in September 2012 in celebration of David S.Warren's fundamental contributions to Computer Science and the area of Logic Programming in particular. Logic Programming (LP) is at the nexus of Knowledge Representation, Artificial Intelligence, Mathematical Logic, Databases, and Programming Languages. It is fascinating and intellectually stimulating due to the fundamental interplay among theory, systems, and applications brought about by logic. Logic programs are more declarative in the sense that they strive to be logical specifications of "what" to do rather than "how" to do it, and thus they are high-level and easier to understand and maintain. Yet, without being given an actual algorithm, LP systems implement the logical specifications automatically. Several books cover the basics of LP but focus mostly on the Prolog language with its incomplete control strategy and non-logical features. At the same time, there is generally a lack of accessible yet comprehensive collections of articles covering the key aspects in declarative LP. These aspects include, among others, well-founded vs. stable model semantics for negation, constraints, object-oriented LP, updates, probabilistic LP, and evaluation methods, including top-down vs. bottom-up, and tabling. For systems, the situation is even less satisfactory, lacking accessible literature that can help train the new crop of developers, practitioners, and researchers. There are a few guides onWarren's Abstract Machine (WAM), which underlies most implementations of Prolog, but very little exists on what is needed for constructing a state-of-the-art declarative LP inference engine. Contrast this with the literature on, say, Compilers, where one can first study a book on the general principles and algorithms and then dive in the particulars of a specific compiler. Such resources greatly facilitate the ability to start making meaningful contributions quickly. There is also a dearth of articles about systems that support truly declarative languages, especially those that tie into first-order logic, mathematical programming, and constraint solving. LP helps solve challenging problems in a wide range of application areas, but in-depth analysis of their connection with LP language abstractions and LP implementation methods is lacking. Also, rare are surveys of challenging application areas of LP, such as Bioinformatics, Natural Language Processing, Verification, and Planning. The goal of this book is to help fill in the previously mentioned void in the LP literature. It offers a number of overviews on key aspects of LP that are suitable for researchers and practitioners as well as graduate students. The following chapters in theory, systems, and applications of LP are included.
Publisher: ACM Books
ISBN: 9781970001969
Category :
Languages : en
Pages : 615
Book Description
The idea of this book grew out of a symposium that was held at Stony Brook in September 2012 in celebration of David S.Warren's fundamental contributions to Computer Science and the area of Logic Programming in particular. Logic Programming (LP) is at the nexus of Knowledge Representation, Artificial Intelligence, Mathematical Logic, Databases, and Programming Languages. It is fascinating and intellectually stimulating due to the fundamental interplay among theory, systems, and applications brought about by logic. Logic programs are more declarative in the sense that they strive to be logical specifications of "what" to do rather than "how" to do it, and thus they are high-level and easier to understand and maintain. Yet, without being given an actual algorithm, LP systems implement the logical specifications automatically. Several books cover the basics of LP but focus mostly on the Prolog language with its incomplete control strategy and non-logical features. At the same time, there is generally a lack of accessible yet comprehensive collections of articles covering the key aspects in declarative LP. These aspects include, among others, well-founded vs. stable model semantics for negation, constraints, object-oriented LP, updates, probabilistic LP, and evaluation methods, including top-down vs. bottom-up, and tabling. For systems, the situation is even less satisfactory, lacking accessible literature that can help train the new crop of developers, practitioners, and researchers. There are a few guides onWarren's Abstract Machine (WAM), which underlies most implementations of Prolog, but very little exists on what is needed for constructing a state-of-the-art declarative LP inference engine. Contrast this with the literature on, say, Compilers, where one can first study a book on the general principles and algorithms and then dive in the particulars of a specific compiler. Such resources greatly facilitate the ability to start making meaningful contributions quickly. There is also a dearth of articles about systems that support truly declarative languages, especially those that tie into first-order logic, mathematical programming, and constraint solving. LP helps solve challenging problems in a wide range of application areas, but in-depth analysis of their connection with LP language abstractions and LP implementation methods is lacking. Also, rare are surveys of challenging application areas of LP, such as Bioinformatics, Natural Language Processing, Verification, and Planning. The goal of this book is to help fill in the previously mentioned void in the LP literature. It offers a number of overviews on key aspects of LP that are suitable for researchers and practitioners as well as graduate students. The following chapters in theory, systems, and applications of LP are included.
Matrix Logic
Author: A. Stern
Publisher: Elsevier
ISBN: 1483295494
Category : Mathematics
Languages : en
Pages : 224
Book Description
In this pioneering work, the author develops a fundamental formulation of logic in terms of theory of matrices and vector spaces. The discovery of matrix logic represents a landmark in the further formalization of logic. For the first time the power of direct mathematical computation is applied to the whole set of logic operations, allowing the derivation of both the classical and modal logics from the same formal base.The new formalism allows the author to enlarge the alphabet of the truth-values with negative logic antivalues and to link matrix logic descriptions with the Dirac formulation of quantum theory - a result having fundamental implications and repercussions for science as a whole.As a unified language which permits a logical examination of the underlying phenomena of quantum field theory and vice versa, matrix logic opens new avenues for the study of fundamental interactions and gives rise to a revolutionary conclusion that physics as such can be viewed and studied as a logic in the fundamental sense.Finally, modelling itself on exact sciences, matrix logic does not refute the classical logic but instead incorporates it as a special deterministic limit. The book requires multidisciplinary knowledge and will be of interest to physicists, mathematicians, computer scientists and engineers.
Publisher: Elsevier
ISBN: 1483295494
Category : Mathematics
Languages : en
Pages : 224
Book Description
In this pioneering work, the author develops a fundamental formulation of logic in terms of theory of matrices and vector spaces. The discovery of matrix logic represents a landmark in the further formalization of logic. For the first time the power of direct mathematical computation is applied to the whole set of logic operations, allowing the derivation of both the classical and modal logics from the same formal base.The new formalism allows the author to enlarge the alphabet of the truth-values with negative logic antivalues and to link matrix logic descriptions with the Dirac formulation of quantum theory - a result having fundamental implications and repercussions for science as a whole.As a unified language which permits a logical examination of the underlying phenomena of quantum field theory and vice versa, matrix logic opens new avenues for the study of fundamental interactions and gives rise to a revolutionary conclusion that physics as such can be viewed and studied as a logic in the fundamental sense.Finally, modelling itself on exact sciences, matrix logic does not refute the classical logic but instead incorporates it as a special deterministic limit. The book requires multidisciplinary knowledge and will be of interest to physicists, mathematicians, computer scientists and engineers.
Dependence Logic
Author: Samson Abramsky
Publisher: Birkhäuser
ISBN: 3319318039
Category : Mathematics
Languages : en
Pages : 286
Book Description
In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning expressive power of several variants of dependence logic with different sets of logical connectives and generalized dependence atoms; connections between inclusion logic and the least-fixed point logic; an overview of dependencies in databases by addressing the relationships between implication problems for fragments of statistical conditional independencies, embedded multivalued dependencies, and propositional logic; various Markovian models used to characterize dependencies and causality among variables in multivariate systems; applications of dependence logic in social choice theory; and an introduction to the theory of secret sharing, pointing out connections to dependence and independence logic.
Publisher: Birkhäuser
ISBN: 3319318039
Category : Mathematics
Languages : en
Pages : 286
Book Description
In this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning expressive power of several variants of dependence logic with different sets of logical connectives and generalized dependence atoms; connections between inclusion logic and the least-fixed point logic; an overview of dependencies in databases by addressing the relationships between implication problems for fragments of statistical conditional independencies, embedded multivalued dependencies, and propositional logic; various Markovian models used to characterize dependencies and causality among variables in multivariate systems; applications of dependence logic in social choice theory; and an introduction to the theory of secret sharing, pointing out connections to dependence and independence logic.