Author: Barry Simon
Publisher: Springer Nature
ISBN: 3030224228
Category : Mathematics
Languages : en
Pages : 445
Book Description
This book provides an in depth discussion of Loewner’s theorem on the characterization of matrix monotone functions. The author refers to the book as a ‘love poem,’ one that highlights a unique mix of algebra and analysis and touches on numerous methods and results. The book details many different topics from analysis, operator theory and algebra, such as divided differences, convexity, positive definiteness, integral representations of function classes, Pick interpolation, rational approximation, orthogonal polynomials, continued fractions, and more. Most applications of Loewner’s theorem involve the easy half of the theorem. A great number of interesting techniques in analysis are the bases for a proof of the hard half. Centered on one theorem, eleven proofs are discussed, both for the study of their own approach to the proof and as a starting point for discussing a variety of tools in analysis. Historical background and inclusion of pictures of some of the main figures who have developed the subject, adds another depth of perspective. The presentation is suitable for detailed study, for quick review or reference to the various methods that are presented. The book is also suitable for independent study. The volume will be of interest to research mathematicians, physicists, and graduate students working in matrix theory and approximation, as well as to analysts and mathematical physicists.
Loewner's Theorem on Monotone Matrix Functions
Author: Barry Simon
Publisher: Springer Nature
ISBN: 3030224228
Category : Mathematics
Languages : en
Pages : 445
Book Description
This book provides an in depth discussion of Loewner’s theorem on the characterization of matrix monotone functions. The author refers to the book as a ‘love poem,’ one that highlights a unique mix of algebra and analysis and touches on numerous methods and results. The book details many different topics from analysis, operator theory and algebra, such as divided differences, convexity, positive definiteness, integral representations of function classes, Pick interpolation, rational approximation, orthogonal polynomials, continued fractions, and more. Most applications of Loewner’s theorem involve the easy half of the theorem. A great number of interesting techniques in analysis are the bases for a proof of the hard half. Centered on one theorem, eleven proofs are discussed, both for the study of their own approach to the proof and as a starting point for discussing a variety of tools in analysis. Historical background and inclusion of pictures of some of the main figures who have developed the subject, adds another depth of perspective. The presentation is suitable for detailed study, for quick review or reference to the various methods that are presented. The book is also suitable for independent study. The volume will be of interest to research mathematicians, physicists, and graduate students working in matrix theory and approximation, as well as to analysts and mathematical physicists.
Publisher: Springer Nature
ISBN: 3030224228
Category : Mathematics
Languages : en
Pages : 445
Book Description
This book provides an in depth discussion of Loewner’s theorem on the characterization of matrix monotone functions. The author refers to the book as a ‘love poem,’ one that highlights a unique mix of algebra and analysis and touches on numerous methods and results. The book details many different topics from analysis, operator theory and algebra, such as divided differences, convexity, positive definiteness, integral representations of function classes, Pick interpolation, rational approximation, orthogonal polynomials, continued fractions, and more. Most applications of Loewner’s theorem involve the easy half of the theorem. A great number of interesting techniques in analysis are the bases for a proof of the hard half. Centered on one theorem, eleven proofs are discussed, both for the study of their own approach to the proof and as a starting point for discussing a variety of tools in analysis. Historical background and inclusion of pictures of some of the main figures who have developed the subject, adds another depth of perspective. The presentation is suitable for detailed study, for quick review or reference to the various methods that are presented. The book is also suitable for independent study. The volume will be of interest to research mathematicians, physicists, and graduate students working in matrix theory and approximation, as well as to analysts and mathematical physicists.
The Bieberbach Conjecture: Proceedings of the Symposium on the Occasion of the Proof
Author: Albert Baernstein (II)
Publisher: American Mathematical Soc.
ISBN: 0821815210
Category : Mathematics
Languages : en
Pages : 238
Book Description
Louis de Branges of Purdue University is recognized as the mathematician who proved Bieberbach's conjecture. This book offers insight into the nature of the conjecture, its history and its proof. It is suitable for research mathematicians and analysts.
Publisher: American Mathematical Soc.
ISBN: 0821815210
Category : Mathematics
Languages : en
Pages : 238
Book Description
Louis de Branges of Purdue University is recognized as the mathematician who proved Bieberbach's conjecture. This book offers insight into the nature of the conjecture, its history and its proof. It is suitable for research mathematicians and analysts.
Univalent Functions
Author: Derek K. Thomas
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110560127
Category : Mathematics
Languages : en
Pages : 347
Book Description
The study of univalent functions dates back to the early years of the 20th century, and is one of the most popular research areas in complex analysis. This book is directed at introducing and bringing up to date current research in the area of univalent functions, with an emphasis on the important subclasses, thus providing an accessible resource suitable for both beginning and experienced researchers. Contents Univalent Functions – the Elementary Theory Definitions of Major Subclasses Fundamental Lemmas Starlike and Convex Functions Starlike and Convex Functions of Order α Strongly Starlike and Convex Functions Alpha-Convex Functions Gamma-Starlike Functions Close-to-Convex Functions Bazilevič Functions B1(α) Bazilevič Functions The Class U(λ) Convolutions Meromorphic Univalent Functions Loewner Theory Other Topics Open Problems
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110560127
Category : Mathematics
Languages : en
Pages : 347
Book Description
The study of univalent functions dates back to the early years of the 20th century, and is one of the most popular research areas in complex analysis. This book is directed at introducing and bringing up to date current research in the area of univalent functions, with an emphasis on the important subclasses, thus providing an accessible resource suitable for both beginning and experienced researchers. Contents Univalent Functions – the Elementary Theory Definitions of Major Subclasses Fundamental Lemmas Starlike and Convex Functions Starlike and Convex Functions of Order α Strongly Starlike and Convex Functions Alpha-Convex Functions Gamma-Starlike Functions Close-to-Convex Functions Bazilevič Functions B1(α) Bazilevič Functions The Class U(λ) Convolutions Meromorphic Univalent Functions Loewner Theory Other Topics Open Problems
Complex Analysis
Author: V. Karunakaran
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842651711
Category : Mathematics
Languages : en
Pages : 444
Book Description
The Second Edition of Complex Analysis, Karunakaran's contributions feature comprehensive approaches to various areas, ranging from the concept of differentiation for complex valued functions of a complex variable, to an introduction on the theory of univalent functions, with an exclusive section on Analytic automorphisms on plane domains.
Publisher: Alpha Science Int'l Ltd.
ISBN: 9781842651711
Category : Mathematics
Languages : en
Pages : 444
Book Description
The Second Edition of Complex Analysis, Karunakaran's contributions feature comprehensive approaches to various areas, ranging from the concept of differentiation for complex valued functions of a complex variable, to an introduction on the theory of univalent functions, with an exclusive section on Analytic automorphisms on plane domains.
Complex Analysis
Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 149871899X
Category : Mathematics
Languages : en
Pages : 365
Book Description
Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis
Publisher: CRC Press
ISBN: 149871899X
Category : Mathematics
Languages : en
Pages : 365
Book Description
Complex Analysis: Conformal Inequalities and the Bieberbach Conjecture discusses the mathematical analysis created around the Bieberbach conjecture, which is responsible for the development of many beautiful aspects of complex analysis, especially in the geometric-function theory of univalent functions. Assuming basic knowledge of complex analysis
Advanced Complex Analysis
Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 1470411016
Category : Mathematics
Languages : en
Pages : 339
Book Description
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-Robinson proof of Picard's theorem, and Bell's proof of the Painlevé smoothness theorem), topics in analytic number theory (including Jacobi's two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuschian differential equations, asymptotic methods (including Euler's method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuschian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.
Publisher: American Mathematical Soc.
ISBN: 1470411016
Category : Mathematics
Languages : en
Pages : 339
Book Description
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-Robinson proof of Picard's theorem, and Bell's proof of the Painlevé smoothness theorem), topics in analytic number theory (including Jacobi's two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuschian differential equations, asymptotic methods (including Euler's method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuschian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.
Conformal Maps And Geometry
Author: Dmitry Beliaev
Publisher: World Scientific
ISBN: 178634615X
Category : Mathematics
Languages : en
Pages : 240
Book Description
'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.
Publisher: World Scientific
ISBN: 178634615X
Category : Mathematics
Languages : en
Pages : 240
Book Description
'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.
Geometric Function Theory in One and Higher Dimensions
Author: Ian Graham
Publisher: CRC Press
ISBN: 9780203911624
Category : Mathematics
Languages : en
Pages : 572
Book Description
This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Caratheodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the in
Publisher: CRC Press
ISBN: 9780203911624
Category : Mathematics
Languages : en
Pages : 572
Book Description
This reference details valuable results that lead to improvements in existence theorems for the Loewner differential equation in higher dimensions, discusses the compactness of the analog of the Caratheodory class in several variables, and studies various classes of univalent mappings according to their geometrical definitions. It introduces the in
Univalent Functions
Author: P. L. Duren
Publisher: Springer Science & Business Media
ISBN: 9780387907956
Category : Mathematics
Languages : en
Pages : 416
Book Description
Publisher: Springer Science & Business Media
ISBN: 9780387907956
Category : Mathematics
Languages : en
Pages : 416
Book Description
Menahem Max Schiffer: Selected Papers Volume 1
Author: Peter Duren
Publisher: Springer Science & Business Media
ISBN: 0817680853
Category : Mathematics
Languages : en
Pages : 572
Book Description
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer’s works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
Publisher: Springer Science & Business Media
ISBN: 0817680853
Category : Mathematics
Languages : en
Pages : 572
Book Description
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer’s works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.