Author: Andrey Itkin
Publisher: World Scientific
ISBN: 9811212783
Category : Business & Economics
Languages : en
Pages : 205
Book Description
The concept of local volatility as well as the local volatility model are one of the classical topics of mathematical finance. Although the existing literature is wide, there still exist various problems that have not drawn sufficient attention so far, for example: a) construction of analytical solutions of the Dupire equation for an arbitrary shape of the local volatility function; b) construction of parametric or non-parametric regression of the local volatility surface suitable for fast calibration; c) no-arbitrage interpolation and extrapolation of the local and implied volatility surfaces; d) extension of the local volatility concept beyond the Black-Scholes model, etc. Also, recent progresses in deep learning and artificial neural networks as applied to financial engineering have made it reasonable to look again at various classical problems of mathematical finance including that of building a no-arbitrage local/implied volatility surface and calibrating it to the option market data.This book was written with the purpose of presenting new results previously developed in a series of papers and explaining them consistently, starting from the general concept of Dupire, Derman and Kani and then concentrating on various extensions proposed by the author and his co-authors. This volume collects all the results in one place, and provides some typical examples of the problems that can be efficiently solved using the proposed methods. This also results in a faster calibration of the local and implied volatility surfaces as compared to standard approaches.The methods and solutions presented in this volume are new and recently published, and are accompanied by various additional comments and considerations. Since from the mathematical point of view, the level of details is closer to the applied rather than to the abstract or pure theoretical mathematics, the book could also be recommended to graduate students with majors in computational or quantitative finance, financial engineering or even applied mathematics. In particular, the author used to teach some topics of this book as a part of his special course on computational finance at the Tandon School of Engineering, New York University.
Fitting Local Volatility: Analytic And Numerical Approaches In Black-scholes And Local Variance Gamma Models
Author: Andrey Itkin
Publisher: World Scientific
ISBN: 9811212783
Category : Business & Economics
Languages : en
Pages : 205
Book Description
The concept of local volatility as well as the local volatility model are one of the classical topics of mathematical finance. Although the existing literature is wide, there still exist various problems that have not drawn sufficient attention so far, for example: a) construction of analytical solutions of the Dupire equation for an arbitrary shape of the local volatility function; b) construction of parametric or non-parametric regression of the local volatility surface suitable for fast calibration; c) no-arbitrage interpolation and extrapolation of the local and implied volatility surfaces; d) extension of the local volatility concept beyond the Black-Scholes model, etc. Also, recent progresses in deep learning and artificial neural networks as applied to financial engineering have made it reasonable to look again at various classical problems of mathematical finance including that of building a no-arbitrage local/implied volatility surface and calibrating it to the option market data.This book was written with the purpose of presenting new results previously developed in a series of papers and explaining them consistently, starting from the general concept of Dupire, Derman and Kani and then concentrating on various extensions proposed by the author and his co-authors. This volume collects all the results in one place, and provides some typical examples of the problems that can be efficiently solved using the proposed methods. This also results in a faster calibration of the local and implied volatility surfaces as compared to standard approaches.The methods and solutions presented in this volume are new and recently published, and are accompanied by various additional comments and considerations. Since from the mathematical point of view, the level of details is closer to the applied rather than to the abstract or pure theoretical mathematics, the book could also be recommended to graduate students with majors in computational or quantitative finance, financial engineering or even applied mathematics. In particular, the author used to teach some topics of this book as a part of his special course on computational finance at the Tandon School of Engineering, New York University.
Publisher: World Scientific
ISBN: 9811212783
Category : Business & Economics
Languages : en
Pages : 205
Book Description
The concept of local volatility as well as the local volatility model are one of the classical topics of mathematical finance. Although the existing literature is wide, there still exist various problems that have not drawn sufficient attention so far, for example: a) construction of analytical solutions of the Dupire equation for an arbitrary shape of the local volatility function; b) construction of parametric or non-parametric regression of the local volatility surface suitable for fast calibration; c) no-arbitrage interpolation and extrapolation of the local and implied volatility surfaces; d) extension of the local volatility concept beyond the Black-Scholes model, etc. Also, recent progresses in deep learning and artificial neural networks as applied to financial engineering have made it reasonable to look again at various classical problems of mathematical finance including that of building a no-arbitrage local/implied volatility surface and calibrating it to the option market data.This book was written with the purpose of presenting new results previously developed in a series of papers and explaining them consistently, starting from the general concept of Dupire, Derman and Kani and then concentrating on various extensions proposed by the author and his co-authors. This volume collects all the results in one place, and provides some typical examples of the problems that can be efficiently solved using the proposed methods. This also results in a faster calibration of the local and implied volatility surfaces as compared to standard approaches.The methods and solutions presented in this volume are new and recently published, and are accompanied by various additional comments and considerations. Since from the mathematical point of view, the level of details is closer to the applied rather than to the abstract or pure theoretical mathematics, the book could also be recommended to graduate students with majors in computational or quantitative finance, financial engineering or even applied mathematics. In particular, the author used to teach some topics of this book as a part of his special course on computational finance at the Tandon School of Engineering, New York University.
Advanced Equity Derivatives
Author: Sebastien Bossu
Publisher: John Wiley & Sons
ISBN: 1118750969
Category : Business & Economics
Languages : en
Pages : 180
Book Description
In Advanced Equity Derivatives: Volatility and Correlation, Sébastien Bossu reviews and explains the advanced concepts used for pricing and hedging equity exotic derivatives. Designed for financial modelers, option traders and sophisticated investors, the content covers the most important theoretical and practical extensions of the Black-Scholes model. Each chapter includes numerous illustrations and a short selection of problems, covering key topics such as implied volatility surface models, pricing with implied distributions, local volatility models, volatility derivatives, correlation measures, correlation trading, local correlation models and stochastic correlation. The author has a dual professional and academic background, making Advanced Equity Derivatives: Volatility and Correlation the perfect reference for quantitative researchers and mathematically savvy finance professionals looking to acquire an in-depth understanding of equity exotic derivatives pricing and hedging.
Publisher: John Wiley & Sons
ISBN: 1118750969
Category : Business & Economics
Languages : en
Pages : 180
Book Description
In Advanced Equity Derivatives: Volatility and Correlation, Sébastien Bossu reviews and explains the advanced concepts used for pricing and hedging equity exotic derivatives. Designed for financial modelers, option traders and sophisticated investors, the content covers the most important theoretical and practical extensions of the Black-Scholes model. Each chapter includes numerous illustrations and a short selection of problems, covering key topics such as implied volatility surface models, pricing with implied distributions, local volatility models, volatility derivatives, correlation measures, correlation trading, local correlation models and stochastic correlation. The author has a dual professional and academic background, making Advanced Equity Derivatives: Volatility and Correlation the perfect reference for quantitative researchers and mathematically savvy finance professionals looking to acquire an in-depth understanding of equity exotic derivatives pricing and hedging.
The Volatility Surface
Author: Jim Gatheral
Publisher:
ISBN: 9781119202073
Category : Options (Finance)
Languages : en
Pages : 179
Book Description
Publisher:
ISBN: 9781119202073
Category : Options (Finance)
Languages : en
Pages : 179
Book Description
The Volatility Smile
Author: Emanuel Derman
Publisher: John Wiley & Sons
ISBN: 1118959167
Category : Business & Economics
Languages : en
Pages : 528
Book Description
The Volatility Smile The Black-Scholes-Merton option model was the greatest innovation of 20th century finance, and remains the most widely applied theory in all of finance. Despite this success, the model is fundamentally at odds with the observed behavior of option markets: a graph of implied volatilities against strike will typically display a curve or skew, which practitioners refer to as the smile, and which the model cannot explain. Option valuation is not a solved problem, and the past forty years have witnessed an abundance of new models that try to reconcile theory with markets. The Volatility Smile presents a unified treatment of the Black-Scholes-Merton model and the more advanced models that have replaced it. It is also a book about the principles of financial valuation and how to apply them. Celebrated author and quant Emanuel Derman and Michael B. Miller explain not just the mathematics but the ideas behind the models. By examining the foundations, the implementation, and the pros and cons of various models, and by carefully exploring their derivations and their assumptions, readers will learn not only how to handle the volatility smile but how to evaluate and build their own financial models. Topics covered include: The principles of valuation Static and dynamic replication The Black-Scholes-Merton model Hedging strategies Transaction costs The behavior of the volatility smile Implied distributions Local volatility models Stochastic volatility models Jump-diffusion models The first half of the book, Chapters 1 through 13, can serve as a standalone textbook for a course on option valuation and the Black-Scholes-Merton model, presenting the principles of financial modeling, several derivations of the model, and a detailed discussion of how it is used in practice. The second half focuses on the behavior of the volatility smile, and, in conjunction with the first half, can be used for as the basis for a more advanced course.
Publisher: John Wiley & Sons
ISBN: 1118959167
Category : Business & Economics
Languages : en
Pages : 528
Book Description
The Volatility Smile The Black-Scholes-Merton option model was the greatest innovation of 20th century finance, and remains the most widely applied theory in all of finance. Despite this success, the model is fundamentally at odds with the observed behavior of option markets: a graph of implied volatilities against strike will typically display a curve or skew, which practitioners refer to as the smile, and which the model cannot explain. Option valuation is not a solved problem, and the past forty years have witnessed an abundance of new models that try to reconcile theory with markets. The Volatility Smile presents a unified treatment of the Black-Scholes-Merton model and the more advanced models that have replaced it. It is also a book about the principles of financial valuation and how to apply them. Celebrated author and quant Emanuel Derman and Michael B. Miller explain not just the mathematics but the ideas behind the models. By examining the foundations, the implementation, and the pros and cons of various models, and by carefully exploring their derivations and their assumptions, readers will learn not only how to handle the volatility smile but how to evaluate and build their own financial models. Topics covered include: The principles of valuation Static and dynamic replication The Black-Scholes-Merton model Hedging strategies Transaction costs The behavior of the volatility smile Implied distributions Local volatility models Stochastic volatility models Jump-diffusion models The first half of the book, Chapters 1 through 13, can serve as a standalone textbook for a course on option valuation and the Black-Scholes-Merton model, presenting the principles of financial modeling, several derivations of the model, and a detailed discussion of how it is used in practice. The second half focuses on the behavior of the volatility smile, and, in conjunction with the first half, can be used for as the basis for a more advanced course.
The Black-Scholes Model
Author: Marek Capiński
Publisher: Cambridge University Press
ISBN: 1107001692
Category : Business & Economics
Languages : en
Pages : 179
Book Description
Master the essential mathematical tools required for option pricing within the context of a specific, yet fundamental, pricing model.
Publisher: Cambridge University Press
ISBN: 1107001692
Category : Business & Economics
Languages : en
Pages : 179
Book Description
Master the essential mathematical tools required for option pricing within the context of a specific, yet fundamental, pricing model.
Black Scholes and Beyond: Option Pricing Models
Author: Neil Chriss
Publisher: McGraw Hill Professional
ISBN: 9780786310258
Category : Business & Economics
Languages : en
Pages : 512
Book Description
An unprecedented book on option pricing! For the first time, the basics on modern option pricing are explained ``from scratch'' using only minimal mathematics. Market practitioners and students alike will learn how and why the Black-Scholes equation works, and what other new methods have been developed that build on the success of Black-Shcoles. The Cox-Ross-Rubinstein binomial trees are discussed, as well as two recent theories of option pricing: the Derman-Kani theory on implied volatility trees and Mark Rubinstein's implied binomial trees. Black-Scholes and Beyond will not only help the reader gain a solid understanding of the Balck-Scholes formula, but will also bring the reader up to date by detailing current theoretical developments from Wall Street. Furthermore, the author expands upon existing research and adds his own new approaches to modern option pricing theory. Among the topics covered in Black-Scholes and Beyond: detailed discussions of pricing and hedging options; volatility smiles and how to price options ``in the presence of the smile''; complete explanation on pricing barrier options.
Publisher: McGraw Hill Professional
ISBN: 9780786310258
Category : Business & Economics
Languages : en
Pages : 512
Book Description
An unprecedented book on option pricing! For the first time, the basics on modern option pricing are explained ``from scratch'' using only minimal mathematics. Market practitioners and students alike will learn how and why the Black-Scholes equation works, and what other new methods have been developed that build on the success of Black-Shcoles. The Cox-Ross-Rubinstein binomial trees are discussed, as well as two recent theories of option pricing: the Derman-Kani theory on implied volatility trees and Mark Rubinstein's implied binomial trees. Black-Scholes and Beyond will not only help the reader gain a solid understanding of the Balck-Scholes formula, but will also bring the reader up to date by detailing current theoretical developments from Wall Street. Furthermore, the author expands upon existing research and adds his own new approaches to modern option pricing theory. Among the topics covered in Black-Scholes and Beyond: detailed discussions of pricing and hedging options; volatility smiles and how to price options ``in the presence of the smile''; complete explanation on pricing barrier options.
Analysis, Geometry, and Modeling in Finance
Author: Pierre Henry-Labordere
Publisher: CRC Press
ISBN: 1420087002
Category : Business & Economics
Languages : en
Pages : 403
Book Description
Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available.Through the problem of option pricing, th
Publisher: CRC Press
ISBN: 1420087002
Category : Business & Economics
Languages : en
Pages : 403
Book Description
Analysis, Geometry, and Modeling in Finance: Advanced Methods in Option Pricing is the first book that applies advanced analytical and geometrical methods used in physics and mathematics to the financial field. It even obtains new results when only approximate and partial solutions were previously available.Through the problem of option pricing, th
Louis Bachelier's Theory of Speculation
Author: Louis Bachelier
Publisher: Princeton University Press
ISBN: 1400829305
Category : Business & Economics
Languages : en
Pages : 205
Book Description
March 29, 1900, is considered by many to be the day mathematical finance was born. On that day a French doctoral student, Louis Bachelier, successfully defended his thesis Théorie de la Spéculation at the Sorbonne. The jury, while noting that the topic was "far away from those usually considered by our candidates," appreciated its high degree of originality. This book provides a new translation, with commentary and background, of Bachelier's seminal work. Bachelier's thesis is a remarkable document on two counts. In mathematical terms Bachelier's achievement was to introduce many of the concepts of what is now known as stochastic analysis. His purpose, however, was to give a theory for the valuation of financial options. He came up with a formula that is both correct on its own terms and surprisingly close to the Nobel Prize-winning solution to the option pricing problem by Fischer Black, Myron Scholes, and Robert Merton in 1973, the first decisive advance since 1900. Aside from providing an accurate and accessible translation, this book traces the twin-track intellectual history of stochastic analysis and financial economics, starting with Bachelier in 1900 and ending in the 1980s when the theory of option pricing was substantially complete. The story is a curious one. The economic side of Bachelier's work was ignored until its rediscovery by financial economists more than fifty years later. The results were spectacular: within twenty-five years the whole theory was worked out, and a multibillion-dollar global industry of option trading had emerged.
Publisher: Princeton University Press
ISBN: 1400829305
Category : Business & Economics
Languages : en
Pages : 205
Book Description
March 29, 1900, is considered by many to be the day mathematical finance was born. On that day a French doctoral student, Louis Bachelier, successfully defended his thesis Théorie de la Spéculation at the Sorbonne. The jury, while noting that the topic was "far away from those usually considered by our candidates," appreciated its high degree of originality. This book provides a new translation, with commentary and background, of Bachelier's seminal work. Bachelier's thesis is a remarkable document on two counts. In mathematical terms Bachelier's achievement was to introduce many of the concepts of what is now known as stochastic analysis. His purpose, however, was to give a theory for the valuation of financial options. He came up with a formula that is both correct on its own terms and surprisingly close to the Nobel Prize-winning solution to the option pricing problem by Fischer Black, Myron Scholes, and Robert Merton in 1973, the first decisive advance since 1900. Aside from providing an accurate and accessible translation, this book traces the twin-track intellectual history of stochastic analysis and financial economics, starting with Bachelier in 1900 and ending in the 1980s when the theory of option pricing was substantially complete. The story is a curious one. The economic side of Bachelier's work was ignored until its rediscovery by financial economists more than fifty years later. The results were spectacular: within twenty-five years the whole theory was worked out, and a multibillion-dollar global industry of option trading had emerged.
Implied Volatility Functions
Author: Bernard Dumas
Publisher:
ISBN:
Category : Options (Finance)
Languages : en
Pages : 34
Book Description
Abstract: Black and Scholes (1973) implied volatilities tend to be systematically related to the option's exercise price and time to expiration. Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) attribute this behavior to the fact that the Black-Scholes constant volatility assumption is violated in practice. These authors hypothesize that the volatility of the underlying asset's return is a deterministic function of the asset price and time and develop the deterministic volatility function (DVF) option valuation model, which has the potential of fitting the observed cross-section of option prices exactly. Using a sample of S & P 500 index options during the period June 1988 through December 1993, we evaluate the economic significance of the implied deterministic volatility function by examining the predictive and hedging performance of the DV option valuation model. We find that its performance is worse than that of an ad hoc Black-Scholes model with variable implied volatilities.
Publisher:
ISBN:
Category : Options (Finance)
Languages : en
Pages : 34
Book Description
Abstract: Black and Scholes (1973) implied volatilities tend to be systematically related to the option's exercise price and time to expiration. Derman and Kani (1994), Dupire (1994), and Rubinstein (1994) attribute this behavior to the fact that the Black-Scholes constant volatility assumption is violated in practice. These authors hypothesize that the volatility of the underlying asset's return is a deterministic function of the asset price and time and develop the deterministic volatility function (DVF) option valuation model, which has the potential of fitting the observed cross-section of option prices exactly. Using a sample of S & P 500 index options during the period June 1988 through December 1993, we evaluate the economic significance of the implied deterministic volatility function by examining the predictive and hedging performance of the DV option valuation model. We find that its performance is worse than that of an ad hoc Black-Scholes model with variable implied volatilities.
Semiparametric Modeling of Implied Volatility
Author: Matthias R. Fengler
Publisher: Springer Science & Business Media
ISBN: 3540305912
Category : Business & Economics
Languages : en
Pages : 232
Book Description
This book offers recent advances in the theory of implied volatility and refined semiparametric estimation strategies and dimension reduction methods for functional surfaces. The first part is devoted to smile-consistent pricing approaches. The second part covers estimation techniques that are natural candidates to meet the challenges in implied volatility surfaces. Empirical investigations, simulations, and pictures illustrate the concepts.
Publisher: Springer Science & Business Media
ISBN: 3540305912
Category : Business & Economics
Languages : en
Pages : 232
Book Description
This book offers recent advances in the theory of implied volatility and refined semiparametric estimation strategies and dimension reduction methods for functional surfaces. The first part is devoted to smile-consistent pricing approaches. The second part covers estimation techniques that are natural candidates to meet the challenges in implied volatility surfaces. Empirical investigations, simulations, and pictures illustrate the concepts.