Author: Paola Gloria Ferrario
Publisher: Springer Science & Business Media
ISBN: 3658023147
Category : Mathematics
Languages : en
Pages : 140
Book Description
Paola Gloria Ferrario develops and investigates several methods of nonparametric local variance estimation. The first two methods use regression estimations (plug-in), achieving least squares estimates as well as local averaging estimates (partitioning or kernel type). Furthermore, the author uses a partitioning method for the estimation of the local variance based on first and second nearest neighbors (instead of regression estimation). Approaching specific problems of application fields, all the results are extended and generalised to the case where only censored observations are available. Further, simulations have been executed comparing the performance of two different estimators (R-Code available!). As a possible application of the given theory the author proposes a survival analysis of patients who are treated for a specific illness.
Local Variance Estimation for Uncensored and Censored Observations
Author: Paola Gloria Ferrario
Publisher: Springer Science & Business Media
ISBN: 3658023147
Category : Mathematics
Languages : en
Pages : 140
Book Description
Paola Gloria Ferrario develops and investigates several methods of nonparametric local variance estimation. The first two methods use regression estimations (plug-in), achieving least squares estimates as well as local averaging estimates (partitioning or kernel type). Furthermore, the author uses a partitioning method for the estimation of the local variance based on first and second nearest neighbors (instead of regression estimation). Approaching specific problems of application fields, all the results are extended and generalised to the case where only censored observations are available. Further, simulations have been executed comparing the performance of two different estimators (R-Code available!). As a possible application of the given theory the author proposes a survival analysis of patients who are treated for a specific illness.
Publisher: Springer Science & Business Media
ISBN: 3658023147
Category : Mathematics
Languages : en
Pages : 140
Book Description
Paola Gloria Ferrario develops and investigates several methods of nonparametric local variance estimation. The first two methods use regression estimations (plug-in), achieving least squares estimates as well as local averaging estimates (partitioning or kernel type). Furthermore, the author uses a partitioning method for the estimation of the local variance based on first and second nearest neighbors (instead of regression estimation). Approaching specific problems of application fields, all the results are extended and generalised to the case where only censored observations are available. Further, simulations have been executed comparing the performance of two different estimators (R-Code available!). As a possible application of the given theory the author proposes a survival analysis of patients who are treated for a specific illness.
Nonparametric Simple Regression
Author: John Fox
Publisher: SAGE
ISBN: 9780761915850
Category : Mathematics
Languages : en
Pages : 100
Book Description
Nonparametric simple regression forms the basis for nonparametric multiple regression and directly supplies the building blocks for the type of nonparametric multiple regression called additive regression.
Publisher: SAGE
ISBN: 9780761915850
Category : Mathematics
Languages : en
Pages : 100
Book Description
Nonparametric simple regression forms the basis for nonparametric multiple regression and directly supplies the building blocks for the type of nonparametric multiple regression called additive regression.
Local Polynomial Modelling and Its Applications
Author: Jianqing Fan
Publisher: Routledge
ISBN: 1351434810
Category : Mathematics
Languages : en
Pages : 358
Book Description
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.
Publisher: Routledge
ISBN: 1351434810
Category : Mathematics
Languages : en
Pages : 358
Book Description
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.
Kernel Smoothing
Author: M.P. Wand
Publisher: CRC Press
ISBN: 1482216124
Category : Mathematics
Languages : en
Pages : 227
Book Description
Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. The basic principle is that local averaging or smoothing is performed with respect to a kernel function. This book provides uninitiated readers with a feeling for the principles, applications, and analysis of kernel smoothers. This is facilita
Publisher: CRC Press
ISBN: 1482216124
Category : Mathematics
Languages : en
Pages : 227
Book Description
Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. The basic principle is that local averaging or smoothing is performed with respect to a kernel function. This book provides uninitiated readers with a feeling for the principles, applications, and analysis of kernel smoothers. This is facilita
Kriging with Nonparametric Variance Function Estimation
Measure and Integral
Author: Richard Wheeden
Publisher: CRC Press
ISBN: 1482229536
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.
Publisher: CRC Press
ISBN: 1482229536
Category : Mathematics
Languages : en
Pages : 289
Book Description
This volume develops the classical theory of the Lebesgue integral and some of its applications. The integral is initially presented in the context of n-dimensional Euclidean space, following a thorough study of the concepts of outer measure and measure. A more general treatment of the integral, based on an axiomatic approach, is later given.
Local Polynomial Modelling and Its Applications
Author: Jianqing Fan
Publisher: CRC Press
ISBN: 9780412983214
Category : Mathematics
Languages : en
Pages : 362
Book Description
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.
Publisher: CRC Press
ISBN: 9780412983214
Category : Mathematics
Languages : en
Pages : 362
Book Description
Data-analytic approaches to regression problems, arising from many scientific disciplines are described in this book. The aim of these nonparametric methods is to relax assumptions on the form of a regression function and to let data search for a suitable function that describes the data well. The use of these nonparametric functions with parametric techniques can yield very powerful data analysis tools. Local polynomial modeling and its applications provides an up-to-date picture on state-of-the-art nonparametric regression techniques. The emphasis of the book is on methodologies rather than on theory, with a particular focus on applications of nonparametric techniques to various statistical problems. High-dimensional data-analytic tools are presented, and the book includes a variety of examples. This will be a valuable reference for research and applied statisticians, and will serve as a textbook for graduate students and others interested in nonparametric regression.
Nonlinear Time Series
Author: Jianqing Fan
Publisher: Springer Science & Business Media
ISBN: 0387693955
Category : Mathematics
Languages : en
Pages : 565
Book Description
This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.
Publisher: Springer Science & Business Media
ISBN: 0387693955
Category : Mathematics
Languages : en
Pages : 565
Book Description
This is the first book that integrates useful parametric and nonparametric techniques with time series modeling and prediction, the two important goals of time series analysis. Such a book will benefit researchers and practitioners in various fields such as econometricians, meteorologists, biologists, among others who wish to learn useful time series methods within a short period of time. The book also intends to serve as a reference or text book for graduate students in statistics and econometrics.
Functional and High-Dimensional Statistics and Related Fields
Author: Germán Aneiros
Publisher: Springer Nature
ISBN: 3030477568
Category : Mathematics
Languages : en
Pages : 254
Book Description
This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.
Publisher: Springer Nature
ISBN: 3030477568
Category : Mathematics
Languages : en
Pages : 254
Book Description
This book presents the latest research on the statistical analysis of functional, high-dimensional and other complex data, addressing methodological and computational aspects, as well as real-world applications. It covers topics like classification, confidence bands, density estimation, depth, diagnostic tests, dimension reduction, estimation on manifolds, high- and infinite-dimensional statistics, inference on functional data, networks, operatorial statistics, prediction, regression, robustness, sequential learning, small-ball probability, smoothing, spatial data, testing, and topological object data analysis, and includes applications in automobile engineering, criminology, drawing recognition, economics, environmetrics, medicine, mobile phone data, spectrometrics and urban environments. The book gathers selected, refereed contributions presented at the Fifth International Workshop on Functional and Operatorial Statistics (IWFOS) in Brno, Czech Republic. The workshop was originally to be held on June 24-26, 2020, but had to be postponed as a consequence of the COVID-19 pandemic. Initiated by the Working Group on Functional and Operatorial Statistics at the University of Toulouse in 2008, the IWFOS workshops provide a forum to discuss the latest trends and advances in functional statistics and related fields, and foster the exchange of ideas and international collaboration in the field.
A Practical Introduction to Regression Discontinuity Designs
Author: Matias D. Cattaneo
Publisher: Cambridge University Press
ISBN: 1108670423
Category : Political Science
Languages : en
Pages : 118
Book Description
In this Element and its accompanying second Element, A Practical Introduction to Regression Discontinuity Designs: Extensions, Matias Cattaneo, Nicolás Idrobo, and Rocıìo Titiunik provide an accessible and practical guide for the analysis and interpretation of regression discontinuity (RD) designs that encourages the use of a common set of practices and facilitates the accumulation of RD-based empirical evidence. In this Element, the authors discuss the foundations of the canonical Sharp RD design, which has the following features: (i) the score is continuously distributed and has only one dimension, (ii) there is only one cutoff, and (iii) compliance with the treatment assignment is perfect. In the second Element, the authors discuss practical and conceptual extensions to this basic RD setup.
Publisher: Cambridge University Press
ISBN: 1108670423
Category : Political Science
Languages : en
Pages : 118
Book Description
In this Element and its accompanying second Element, A Practical Introduction to Regression Discontinuity Designs: Extensions, Matias Cattaneo, Nicolás Idrobo, and Rocıìo Titiunik provide an accessible and practical guide for the analysis and interpretation of regression discontinuity (RD) designs that encourages the use of a common set of practices and facilitates the accumulation of RD-based empirical evidence. In this Element, the authors discuss the foundations of the canonical Sharp RD design, which has the following features: (i) the score is continuously distributed and has only one dimension, (ii) there is only one cutoff, and (iii) compliance with the treatment assignment is perfect. In the second Element, the authors discuss practical and conceptual extensions to this basic RD setup.