Author: Ivana Palunko
Publisher: Springer
ISBN: 9783319032283
Category : Technology & Engineering
Languages : en
Pages : 150
Book Description
Unmanned aerial vehicles are increasingly being used to perform complex functions or to assist humans to carry out dangerous missions within dynamic environments. Other possible applications include search and rescue, disaster relief operations, environmental monitoring, wireless surveillance networks, and cooperative manipulation. Creating these types of autonomous aerial vehicles places severe demands on the design of control schemes that can adapt to different scenarios and possible changes of vehicle dynamics. In this book we address the challenging problem of employing aerial robots to transport and manipulate loads safely and efficiently. Aerial load manipulation and transportation is extremely important in emergency rescue missions as well as for military and industrial purposes. This book gives an insight into problems that can arise in aerial load transportation and suggests control systems techniques to solve them. A key focus is given on modeling of the aerial load transportation system as well as stability and robustness analysis. A detailed design and derivation of control algorithms based on adaptive control, optimal control and reinforcement learning are discussed in detail. Furthermore, an experimental testbed and controller implementation are delineated.
Load Transportation Using Aerial Robots
Author: Ivana Palunko
Publisher: Springer
ISBN: 9783319032283
Category : Technology & Engineering
Languages : en
Pages : 150
Book Description
Unmanned aerial vehicles are increasingly being used to perform complex functions or to assist humans to carry out dangerous missions within dynamic environments. Other possible applications include search and rescue, disaster relief operations, environmental monitoring, wireless surveillance networks, and cooperative manipulation. Creating these types of autonomous aerial vehicles places severe demands on the design of control schemes that can adapt to different scenarios and possible changes of vehicle dynamics. In this book we address the challenging problem of employing aerial robots to transport and manipulate loads safely and efficiently. Aerial load manipulation and transportation is extremely important in emergency rescue missions as well as for military and industrial purposes. This book gives an insight into problems that can arise in aerial load transportation and suggests control systems techniques to solve them. A key focus is given on modeling of the aerial load transportation system as well as stability and robustness analysis. A detailed design and derivation of control algorithms based on adaptive control, optimal control and reinforcement learning are discussed in detail. Furthermore, an experimental testbed and controller implementation are delineated.
Publisher: Springer
ISBN: 9783319032283
Category : Technology & Engineering
Languages : en
Pages : 150
Book Description
Unmanned aerial vehicles are increasingly being used to perform complex functions or to assist humans to carry out dangerous missions within dynamic environments. Other possible applications include search and rescue, disaster relief operations, environmental monitoring, wireless surveillance networks, and cooperative manipulation. Creating these types of autonomous aerial vehicles places severe demands on the design of control schemes that can adapt to different scenarios and possible changes of vehicle dynamics. In this book we address the challenging problem of employing aerial robots to transport and manipulate loads safely and efficiently. Aerial load manipulation and transportation is extremely important in emergency rescue missions as well as for military and industrial purposes. This book gives an insight into problems that can arise in aerial load transportation and suggests control systems techniques to solve them. A key focus is given on modeling of the aerial load transportation system as well as stability and robustness analysis. A detailed design and derivation of control algorithms based on adaptive control, optimal control and reinforcement learning are discussed in detail. Furthermore, an experimental testbed and controller implementation are delineated.
Theory and Applications for Control of Aerial Robots in Physical Interaction Through Tethers
Author: Marco Tognon
Publisher: Springer Nature
ISBN: 3030486591
Category : Technology & Engineering
Languages : en
Pages : 172
Book Description
This book studies how autonomous aerial robots physically interact with the surrounding environment. Intended to promote the advancement of aerial physical interaction, it analyzes a particular class of aerial robots: tethered aerial vehicles. By examining specific systems, while still considering the challenges of the general problem, it will help readers acquire the knowledge and expertise needed for the subsequent development of more general methods applicable to aerial physical interaction. The formal analysis covers topics ranging from control, state estimation, and motion planning, to experimental validation. Addressing both theoretical and technical aspects, the book is intended for a broad academic and industrial readership, including undergraduate students, researchers and engineers. It can be used as a teaching reference, or as the basis for product development.
Publisher: Springer Nature
ISBN: 3030486591
Category : Technology & Engineering
Languages : en
Pages : 172
Book Description
This book studies how autonomous aerial robots physically interact with the surrounding environment. Intended to promote the advancement of aerial physical interaction, it analyzes a particular class of aerial robots: tethered aerial vehicles. By examining specific systems, while still considering the challenges of the general problem, it will help readers acquire the knowledge and expertise needed for the subsequent development of more general methods applicable to aerial physical interaction. The formal analysis covers topics ranging from control, state estimation, and motion planning, to experimental validation. Addressing both theoretical and technical aspects, the book is intended for a broad academic and industrial readership, including undergraduate students, researchers and engineers. It can be used as a teaching reference, or as the basis for product development.
Aerial Manipulation
Author: Matko Orsag
Publisher: Springer
ISBN: 3319610228
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This text is a thorough treatment of the rapidly growing area of aerial manipulation. It details all the design steps required for the modeling and control of unmanned aerial vehicles (UAV) equipped with robotic manipulators. Starting with the physical basics of rigid-body kinematics, the book gives an in-depth presentation of local and global coordinates, together with the representation of orientation and motion in fixed- and moving-coordinate systems. Coverage of the kinematics and dynamics of unmanned aerial vehicles is developed in a succession of popular UAV configurations for multirotor systems. Such an arrangement, supported by frequent examples and end-of-chapter exercises, leads the reader from simple to more complex UAV configurations. Propulsion-system aerodynamics, essential in UAV design, is analyzed through blade-element and momentum theories, analysis which is followed by a description of drag and ground-aerodynamic effects. The central part of the book is dedicated to aerial-manipulator kinematics, dynamics, and control. Based on foundations laid in the opening chapters, this portion of the book is a structured presentation of Newton–Euler dynamic modeling that results in forward and backward equations in both fixed- and moving-coordinate systems. The Lagrange–Euler approach is applied to expand the model further, providing formalisms to model the variable moment of inertia later used to analyze the dynamics of aerial manipulators in contact with the environment. Using knowledge from sensor data, insights are presented into the ways in which linear, robust, and adaptive control techniques can be applied in aerial manipulation so as to tackle the real-world problems faced by scholars and engineers in the design and implementation of aerial robotics systems. The book is completed by path and trajectory planning with vision-based examples for tracking and manipulation.
Publisher: Springer
ISBN: 3319610228
Category : Technology & Engineering
Languages : en
Pages : 246
Book Description
This text is a thorough treatment of the rapidly growing area of aerial manipulation. It details all the design steps required for the modeling and control of unmanned aerial vehicles (UAV) equipped with robotic manipulators. Starting with the physical basics of rigid-body kinematics, the book gives an in-depth presentation of local and global coordinates, together with the representation of orientation and motion in fixed- and moving-coordinate systems. Coverage of the kinematics and dynamics of unmanned aerial vehicles is developed in a succession of popular UAV configurations for multirotor systems. Such an arrangement, supported by frequent examples and end-of-chapter exercises, leads the reader from simple to more complex UAV configurations. Propulsion-system aerodynamics, essential in UAV design, is analyzed through blade-element and momentum theories, analysis which is followed by a description of drag and ground-aerodynamic effects. The central part of the book is dedicated to aerial-manipulator kinematics, dynamics, and control. Based on foundations laid in the opening chapters, this portion of the book is a structured presentation of Newton–Euler dynamic modeling that results in forward and backward equations in both fixed- and moving-coordinate systems. The Lagrange–Euler approach is applied to expand the model further, providing formalisms to model the variable moment of inertia later used to analyze the dynamics of aerial manipulators in contact with the environment. Using knowledge from sensor data, insights are presented into the ways in which linear, robust, and adaptive control techniques can be applied in aerial manipulation so as to tackle the real-world problems faced by scholars and engineers in the design and implementation of aerial robotics systems. The book is completed by path and trajectory planning with vision-based examples for tracking and manipulation.
Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021
Author: Thorsten Schüppstuhl
Publisher: Springer Nature
ISBN: 3030740323
Category : Robots, Industrial
Languages : en
Pages : 400
Book Description
This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI). The Editors Prof. Dr.-Ing. Thorsten Schüppstuhl is head of the Institute of Aircraft Production Technology (IFPT) at the Hamburg University of Technology. Prof. Dr.-Ing. Kirsten Tracht is head of the Bremen Institute for Mechanical Engineering (bime) at the University of Bremen. Prof. Dr.-Ing. Annika Raatz is head of the Institute of Assembly Technology (match) at the Leibniz University Hannover.
Publisher: Springer Nature
ISBN: 3030740323
Category : Robots, Industrial
Languages : en
Pages : 400
Book Description
This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI). The Editors Prof. Dr.-Ing. Thorsten Schüppstuhl is head of the Institute of Aircraft Production Technology (IFPT) at the Hamburg University of Technology. Prof. Dr.-Ing. Kirsten Tracht is head of the Bremen Institute for Mechanical Engineering (bime) at the University of Bremen. Prof. Dr.-Ing. Annika Raatz is head of the Institute of Assembly Technology (match) at the Leibniz University Hannover.
Control of Ground and Aerial Robots
Author: Mario Sarcinelli-Filho
Publisher: Springer Nature
ISBN: 3031230884
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
The focus of this book is kinematic and dynamic control of a single mobile robot or a group of them. New simple and integrated solutions are presented for tasks of positioning, trajectory tracking and path following. Control of Ground and Aerial Robots synthesizes new results on control of mobile robots developed by M.Sc. and Ph.D. students supervised by the authors. The robots considered are wheeled mobile platforms, with emphasis on differential drive vehicles, and the multirotor aerial robots. Integrated control solutions based on the technique of feedback linearization are proposed to guide either a single robot or a homogeneous/heterogeneous group of mobile robots. Examples on the use of the proposed controllers are also provided. Finally, Control of Ground and Aerial Robots is intended to help graduate and advanced undergraduate students in engineering, as well as researchers in the area of robot control, to design controllers to autonomously guide the more common mobile platforms.
Publisher: Springer Nature
ISBN: 3031230884
Category : Technology & Engineering
Languages : en
Pages : 157
Book Description
The focus of this book is kinematic and dynamic control of a single mobile robot or a group of them. New simple and integrated solutions are presented for tasks of positioning, trajectory tracking and path following. Control of Ground and Aerial Robots synthesizes new results on control of mobile robots developed by M.Sc. and Ph.D. students supervised by the authors. The robots considered are wheeled mobile platforms, with emphasis on differential drive vehicles, and the multirotor aerial robots. Integrated control solutions based on the technique of feedback linearization are proposed to guide either a single robot or a homogeneous/heterogeneous group of mobile robots. Examples on the use of the proposed controllers are also provided. Finally, Control of Ground and Aerial Robots is intended to help graduate and advanced undergraduate students in engineering, as well as researchers in the area of robot control, to design controllers to autonomously guide the more common mobile platforms.
Ground and Air Robotic Manipulation Systems in Agriculture
Author: Andrey Ronzhin
Publisher: Springer Nature
ISBN: 3030868265
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
Problems of joint application of heterogeneous ground and air robotic means while performing the agricultural technological tasks that require physical interaction with agricultural products and the environment are discussed in the book. Proposed solutions for the exchange of energy and physical resources of unmanned aerial vehicles on ground service platforms, automation of the process of collecting agricultural products and ensuring the stability of the air manipulation system at physical interaction with a ground object are important for the transport and agricultural industry robotization. The book addresses the researchers investigating interdisciplinary issues of agricultural production robotization, problems of information, physical and energy interaction of ground and air robots; recommended to postgraduates and students studying "Mechatronics and robotics" and "Technologies, mechanization and power equipment in agriculture, forestry and fisheries."
Publisher: Springer Nature
ISBN: 3030868265
Category : Technology & Engineering
Languages : en
Pages : 283
Book Description
Problems of joint application of heterogeneous ground and air robotic means while performing the agricultural technological tasks that require physical interaction with agricultural products and the environment are discussed in the book. Proposed solutions for the exchange of energy and physical resources of unmanned aerial vehicles on ground service platforms, automation of the process of collecting agricultural products and ensuring the stability of the air manipulation system at physical interaction with a ground object are important for the transport and agricultural industry robotization. The book addresses the researchers investigating interdisciplinary issues of agricultural production robotization, problems of information, physical and energy interaction of ground and air robots; recommended to postgraduates and students studying "Mechatronics and robotics" and "Technologies, mechanization and power equipment in agriculture, forestry and fisheries."
Load Transportation Using Aerial Robots
Author: Ivana Palunko
Publisher: Springer
ISBN: 9783319032269
Category : Technology & Engineering
Languages : en
Pages : 150
Book Description
Unmanned aerial vehicles are increasingly being used to perform complex functions or to assist humans to carry out dangerous missions within dynamic environments. Other possible applications include search and rescue, disaster relief operations, environmental monitoring, wireless surveillance networks, and cooperative manipulation. Creating these types of autonomous aerial vehicles places severe demands on the design of control schemes that can adapt to different scenarios and possible changes of vehicle dynamics. In this book we address the challenging problem of employing aerial robots to transport and manipulate loads safely and efficiently. Aerial load manipulation and transportation is extremely important in emergency rescue missions as well as for military and industrial purposes. This book gives an insight into problems that can arise in aerial load transportation and suggests control systems techniques to solve them. A key focus is given on modeling of the aerial load transportation system as well as stability and robustness analysis. A detailed design and derivation of control algorithms based on adaptive control, optimal control and reinforcement learning are discussed in detail. Furthermore, an experimental testbed and controller implementation are delineated.
Publisher: Springer
ISBN: 9783319032269
Category : Technology & Engineering
Languages : en
Pages : 150
Book Description
Unmanned aerial vehicles are increasingly being used to perform complex functions or to assist humans to carry out dangerous missions within dynamic environments. Other possible applications include search and rescue, disaster relief operations, environmental monitoring, wireless surveillance networks, and cooperative manipulation. Creating these types of autonomous aerial vehicles places severe demands on the design of control schemes that can adapt to different scenarios and possible changes of vehicle dynamics. In this book we address the challenging problem of employing aerial robots to transport and manipulate loads safely and efficiently. Aerial load manipulation and transportation is extremely important in emergency rescue missions as well as for military and industrial purposes. This book gives an insight into problems that can arise in aerial load transportation and suggests control systems techniques to solve them. A key focus is given on modeling of the aerial load transportation system as well as stability and robustness analysis. A detailed design and derivation of control algorithms based on adaptive control, optimal control and reinforcement learning are discussed in detail. Furthermore, an experimental testbed and controller implementation are delineated.
Aerial Robotic Manipulation
Author: Anibal Ollero
Publisher: Springer
ISBN: 3030129454
Category : Technology & Engineering
Languages : en
Pages : 385
Book Description
Aerial robotic manipulation integrates concepts and technologies coming from unmanned aerial systems and robotics manipulation. It includes not only kinematic, dynamics, aerodynamics and control but also perception, planning, design aspects, mechatronics and cooperation between several aerial robotics manipulators. All these topics are considered in this book in which the main research and development approaches in aerial robotic manipulation are presented, including the description of relevant systems. In addition of the research aspects, the book also includes the deployment of real systems both indoors and outdoors, which is a relevant characteristic of the book because most results of aerial robotic manipulation have been validated only indoor using motion tracking systems. Moreover, the book presents two relevant applications: structure assembly and inspection and maintenance, which has started to be applied in the industry. The Chapters of the book will present results of two main European Robotics Projects in aerial robotics manipulation: FP7 ARCAS and H2020 AEROARMS. FP7 ARCAS defined the basic concepts on aerial robotic manipulation, including cooperative manipulation. The H2020 AEROARMS on aerial robot with multiple arms and advanced manipulation capabilities for inspection and maintenance has two general objectives: (1) development of advanced aerial robotic manipulation methods and technologies, including manipulation with dual arms and multi-directional thrusters aerial platforms; and (2) application to the inspection and maintenance.
Publisher: Springer
ISBN: 3030129454
Category : Technology & Engineering
Languages : en
Pages : 385
Book Description
Aerial robotic manipulation integrates concepts and technologies coming from unmanned aerial systems and robotics manipulation. It includes not only kinematic, dynamics, aerodynamics and control but also perception, planning, design aspects, mechatronics and cooperation between several aerial robotics manipulators. All these topics are considered in this book in which the main research and development approaches in aerial robotic manipulation are presented, including the description of relevant systems. In addition of the research aspects, the book also includes the deployment of real systems both indoors and outdoors, which is a relevant characteristic of the book because most results of aerial robotic manipulation have been validated only indoor using motion tracking systems. Moreover, the book presents two relevant applications: structure assembly and inspection and maintenance, which has started to be applied in the industry. The Chapters of the book will present results of two main European Robotics Projects in aerial robotics manipulation: FP7 ARCAS and H2020 AEROARMS. FP7 ARCAS defined the basic concepts on aerial robotic manipulation, including cooperative manipulation. The H2020 AEROARMS on aerial robot with multiple arms and advanced manipulation capabilities for inspection and maintenance has two general objectives: (1) development of advanced aerial robotic manipulation methods and technologies, including manipulation with dual arms and multi-directional thrusters aerial platforms; and (2) application to the inspection and maintenance.
Visual Guidance of Unmanned Aerial Manipulators
Author: Angel Santamaria-Navarro
Publisher: Springer
ISBN: 3319965808
Category : Technology & Engineering
Languages : en
Pages : 155
Book Description
This monograph covers theoretical and practical aspects of the problem of autonomous guiding of unmanned aerial manipulators using visual information. For the estimation of the vehicle state (position, orientation, velocity, and acceleration), the authors propose a method that relies exclusively on the use of low-cost and highrate sensors together with low-complexity algorithms. This is particularly interesting for applications in which on board computation with low computation power is needed. Another relevant topic covered in this monograph is visual servoing. The authors present an uncalibrated visual servo scheme, capable of estimating at run time, the camera focal length from the observation of a tracked target. The monograph also covers several control techniques, which achieve a number of tasks, such as robot and arm positioning, improve stability and enhance robot arm motions. All methods discussed in this monograph are demonstrated in simulation and through real robot experimentation. The text is appropriate for readers interested in state estimation and control of aerial manipulators, and is a reference book for people who work in mobile robotics research in general.
Publisher: Springer
ISBN: 3319965808
Category : Technology & Engineering
Languages : en
Pages : 155
Book Description
This monograph covers theoretical and practical aspects of the problem of autonomous guiding of unmanned aerial manipulators using visual information. For the estimation of the vehicle state (position, orientation, velocity, and acceleration), the authors propose a method that relies exclusively on the use of low-cost and highrate sensors together with low-complexity algorithms. This is particularly interesting for applications in which on board computation with low computation power is needed. Another relevant topic covered in this monograph is visual servoing. The authors present an uncalibrated visual servo scheme, capable of estimating at run time, the camera focal length from the observation of a tracked target. The monograph also covers several control techniques, which achieve a number of tasks, such as robot and arm positioning, improve stability and enhance robot arm motions. All methods discussed in this monograph are demonstrated in simulation and through real robot experimentation. The text is appropriate for readers interested in state estimation and control of aerial manipulators, and is a reference book for people who work in mobile robotics research in general.
Lighter than Air Robots
Author: Yasmina Bestaoui Sebbane
Publisher: Springer Science & Business Media
ISBN: 9400726635
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The second level smoothes this set so that the generated paths are feasible given the vehicle's velocity and accelerations limits. The third level generates flyable, timed trajectories and the last one is the tracking controller that attempts to minimize the error between the robot measured trajectory and the reference trajectory. This hierarchy is reflected in the structure and content of the book. Topics treated are: Modelling, Flight Planning, Trajectory Design and Control. Finally, some actual projects are described in the appendix. This volume will prove useful for researchers and practitioners working in Robotics and Automation, Aerospace Technology, Control and Artificial Intelligence.
Publisher: Springer Science & Business Media
ISBN: 9400726635
Category : Technology & Engineering
Languages : en
Pages : 263
Book Description
An aerial robot is a system capable of sustained flight with no direct human control and able to perform a specific task. A lighter than air robot is an aerial robot that relies on the static lift to balance its own weight. It can also be defined as a lighter than air unmanned aerial vehicle or an unmanned airship with sufficient autonomy. Lighter than air systems are particularly appealing since the energy to keep them airborne is small. They are increasingly considered for various tasks such as monitoring, surveillance, advertising, freight carrier, transportation. This book familiarizes readers with a hierarchical decoupled planning and control strategy that has been proven efficient through research. It is made up of a hierarchy of modules with well defined functions operating at a variety of rates, linked together from top to bottom. The outer loop, closed periodically, consists of a discrete search that produces a set of waypoints leading to the goal while avoiding obstacles and weighed regions. The second level smoothes this set so that the generated paths are feasible given the vehicle's velocity and accelerations limits. The third level generates flyable, timed trajectories and the last one is the tracking controller that attempts to minimize the error between the robot measured trajectory and the reference trajectory. This hierarchy is reflected in the structure and content of the book. Topics treated are: Modelling, Flight Planning, Trajectory Design and Control. Finally, some actual projects are described in the appendix. This volume will prove useful for researchers and practitioners working in Robotics and Automation, Aerospace Technology, Control and Artificial Intelligence.