Author: Ashish Arora
Publisher: Artech House
ISBN: 1630816043
Category : Technology & Engineering
Languages : en
Pages : 231
Book Description
This comprehensive resource caters to system designers that are looking to incorporate lithium ion (li-ion) batteries in their applications. Detailed discussion of the various system considerations that must be addressed at the design stage to reduce the risk of failures in the field is presented. The book includes technical details of all state-of-the-art Li-on energy storage subsystems and their requirements, and provides a system designer a single resource detailing all of the common issues navigated when using Li-ion batteries to reduce the risk of field failures. The book details the various industry standards that are applicable to the subsystems of Li-ion energy storage systems and how the requirements of these standards may impact the design of their system. Checklists are included to help readers evaluate their own battery system designs and identify gaps in the designs that increase the risk of field failures. The book is packed with numerous examples of issues that have caused field failures and how a proper design/assembly process could have reduced the risk of these failures.
Lithium-Ion Battery Failures in Consumer Electronics
Author: Ashish Arora
Publisher: Artech House
ISBN: 1630816043
Category : Technology & Engineering
Languages : en
Pages : 231
Book Description
This comprehensive resource caters to system designers that are looking to incorporate lithium ion (li-ion) batteries in their applications. Detailed discussion of the various system considerations that must be addressed at the design stage to reduce the risk of failures in the field is presented. The book includes technical details of all state-of-the-art Li-on energy storage subsystems and their requirements, and provides a system designer a single resource detailing all of the common issues navigated when using Li-ion batteries to reduce the risk of field failures. The book details the various industry standards that are applicable to the subsystems of Li-ion energy storage systems and how the requirements of these standards may impact the design of their system. Checklists are included to help readers evaluate their own battery system designs and identify gaps in the designs that increase the risk of field failures. The book is packed with numerous examples of issues that have caused field failures and how a proper design/assembly process could have reduced the risk of these failures.
Publisher: Artech House
ISBN: 1630816043
Category : Technology & Engineering
Languages : en
Pages : 231
Book Description
This comprehensive resource caters to system designers that are looking to incorporate lithium ion (li-ion) batteries in their applications. Detailed discussion of the various system considerations that must be addressed at the design stage to reduce the risk of failures in the field is presented. The book includes technical details of all state-of-the-art Li-on energy storage subsystems and their requirements, and provides a system designer a single resource detailing all of the common issues navigated when using Li-ion batteries to reduce the risk of field failures. The book details the various industry standards that are applicable to the subsystems of Li-ion energy storage systems and how the requirements of these standards may impact the design of their system. Checklists are included to help readers evaluate their own battery system designs and identify gaps in the designs that increase the risk of field failures. The book is packed with numerous examples of issues that have caused field failures and how a proper design/assembly process could have reduced the risk of these failures.
Lithium-Ion Batteries Hazard and Use Assessment
Author: Celina Mikolajczak
Publisher: Springer Science & Business Media
ISBN: 1461434858
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
Lithium-Ion Batteries Hazard and Use Assessment examines the usage of lithium-ion batteries and cells within consumer, industrial and transportation products, and analyzes the potential hazards associated with their prolonged use. This book also surveys the applicable codes and standards for lithium-ion technology. Lithium-Ion Batteries Hazard and Use Assessment is designed for practitioners as a reference guide for lithium-ion batteries and cells. Researchers working in a related field will also find the book valuable.
Publisher: Springer Science & Business Media
ISBN: 1461434858
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
Lithium-Ion Batteries Hazard and Use Assessment examines the usage of lithium-ion batteries and cells within consumer, industrial and transportation products, and analyzes the potential hazards associated with their prolonged use. This book also surveys the applicable codes and standards for lithium-ion technology. Lithium-Ion Batteries Hazard and Use Assessment is designed for practitioners as a reference guide for lithium-ion batteries and cells. Researchers working in a related field will also find the book valuable.
Batteries in a Portable World
The Handbook of Lithium-Ion Battery Pack Design
Author: John T. Warner
Publisher: Elsevier
ISBN: 0443138087
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman's explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. - Adds a brief history of battery technology and its evolution to current technologies? - Expands and updates the chemistry to include the latest types - Discusses thermal runaway and cascading failure mitigation technologies? - Expands and updates the descriptions of the battery module and pack components and systems?? - Adds description of the manufacturing processes for cells, modules, and packs? - Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?
Publisher: Elsevier
ISBN: 0443138087
Category : Technology & Engineering
Languages : en
Pages : 472
Book Description
The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology,?Second Edition provides a clear and concise explanation of EV and Li-ion batteries for readers that are new to the field. The second edition expands and updates all topics covered in the original book, adding more details to all existing chapters and including major updates to align with all of the rapid changes the industry has experienced over the past few years. This handbook offers a layman's explanation of the history of vehicle electrification and battery technology, describing the various terminology and acronyms and explaining how to do simple calculations that can be used in determining basic battery sizing, capacity, voltage, and energy. By the end of this book the reader will have a solid understanding of the terminology around Li-ion batteries and be able to undertake simple battery calculations. The book is immensely useful to beginning and experienced engineers alike who are moving into the battery field. Li-ion batteries are one of the most unique systems in automobiles today in that they combine multiple engineering disciplines, yet most engineering programs focus on only a single engineering field. This book provides the reader with a reference to the history, terminology and design criteria needed to understand the Li-ion battery and to successfully lay out a new battery concept. Whether you are an electrical engineer, a mechanical engineer or a chemist, this book will help you better appreciate the inter-relationships between the various battery engineering fields that are required to understand the battery as an Energy Storage System. It gives great insights for readers ranging from engineers to sales, marketing, management, leadership, investors, and government officials. - Adds a brief history of battery technology and its evolution to current technologies? - Expands and updates the chemistry to include the latest types - Discusses thermal runaway and cascading failure mitigation technologies? - Expands and updates the descriptions of the battery module and pack components and systems?? - Adds description of the manufacturing processes for cells, modules, and packs? - Introduces and discusses new topics such as battery-as-a-service, cell to pack and cell to chassis designs, and wireless BMS?
Electrochemical Power Sources: Fundamentals, Systems, and Applications
Author: Jürgen Garche
Publisher: Elsevier
ISBN: 0444640088
Category : Technology & Engineering
Languages : en
Pages : 671
Book Description
Safety of Lithium Batteries describes how best to assure safety during all phases of the life of Lithium ion batteries (production, transport, use, and disposal). About 5 billion Li-ion cells are produced each year, predominantly for use in consumer electronics. This book describes how the high-energy density and outstanding performance of Li-ion batteries will result in a large increase in the production of Li-ion cells for electric drive train vehicle (xEV) and battery energy storage (BES or EES) purposes. The high-energy density of Li battery systems comes with special hazards related to the materials employed in these systems. The manufacturers of cells and batteries have strongly reduced the hazard probability by a number of measures. However, absolute safety of the Li system is not given as multiple incidents in consumer electronics have shown. - Presents the relationship between chemical and structure material properties and cell safety - Relates cell and battery design to safety as well as system operation parameters to safety - Outlines the influences of abuses on safety and the relationship to battery testing - Explores the limitations for transport and storage of cells and batteries - Includes recycling, disposal and second use of lithium ion batteries
Publisher: Elsevier
ISBN: 0444640088
Category : Technology & Engineering
Languages : en
Pages : 671
Book Description
Safety of Lithium Batteries describes how best to assure safety during all phases of the life of Lithium ion batteries (production, transport, use, and disposal). About 5 billion Li-ion cells are produced each year, predominantly for use in consumer electronics. This book describes how the high-energy density and outstanding performance of Li-ion batteries will result in a large increase in the production of Li-ion cells for electric drive train vehicle (xEV) and battery energy storage (BES or EES) purposes. The high-energy density of Li battery systems comes with special hazards related to the materials employed in these systems. The manufacturers of cells and batteries have strongly reduced the hazard probability by a number of measures. However, absolute safety of the Li system is not given as multiple incidents in consumer electronics have shown. - Presents the relationship between chemical and structure material properties and cell safety - Relates cell and battery design to safety as well as system operation parameters to safety - Outlines the influences of abuses on safety and the relationship to battery testing - Explores the limitations for transport and storage of cells and batteries - Includes recycling, disposal and second use of lithium ion batteries
Lithium-Ion Batteries Hazard and Use Assessment
Author: Celina Mikolajczak
Publisher: Springer Science & Business Media
ISBN: 1461434866
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
Lithium-Ion Batteries Hazard and Use Assessment examines the usage of lithium-ion batteries and cells within consumer, industrial and transportation products, and analyzes the potential hazards associated with their prolonged use. This book also surveys the applicable codes and standards for lithium-ion technology. Lithium-Ion Batteries Hazard and Use Assessment is designed for practitioners as a reference guide for lithium-ion batteries and cells. Researchers working in a related field will also find the book valuable.
Publisher: Springer Science & Business Media
ISBN: 1461434866
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
Lithium-Ion Batteries Hazard and Use Assessment examines the usage of lithium-ion batteries and cells within consumer, industrial and transportation products, and analyzes the potential hazards associated with their prolonged use. This book also surveys the applicable codes and standards for lithium-ion technology. Lithium-Ion Batteries Hazard and Use Assessment is designed for practitioners as a reference guide for lithium-ion batteries and cells. Researchers working in a related field will also find the book valuable.
Lithium-Ion Batteries and Applications: A Practical and Comprehensive Guide to Lithium-Ion Batteries and Arrays, from Toys to Towns, Volume 2, Applications
Author: Davide Andrea
Publisher: Artech House
ISBN: 1630817708
Category : Technology & Engineering
Languages : en
Pages : 462
Book Description
This comprehensive, two-volume resource provides a thorough introduction to lithium ion (Li-ion) technology. Readers get a hands-on understanding of Li-ion technology, are guided through the design and assembly of a battery, through deployment, configuration and testing. The book covers dozens of applications, with solutions for each application provided. Volume Two focuses on small batteries in consumer products and power banks, as well as large low voltage batteries in stationary or mobile house power, telecom, residential, marine and microgrid. Traction batteries, including passenger, industrial, race vehicles, public transit, marine, submarine and aircraft are also discussed. High voltage stationary batteries grid-tied and off-grid are presented, exploring their use in grid quality, arbitrage and back-up, residential, microgrid, industrial, office buildings. Finally, the book explores what happens when accidents occur, so readers may avoid these mistakes. Written by a prominent expert in the field and packed with over 500 illustrations, these volumes contain solutions to practical problems, making it useful for both the novice and experienced practitioners.
Publisher: Artech House
ISBN: 1630817708
Category : Technology & Engineering
Languages : en
Pages : 462
Book Description
This comprehensive, two-volume resource provides a thorough introduction to lithium ion (Li-ion) technology. Readers get a hands-on understanding of Li-ion technology, are guided through the design and assembly of a battery, through deployment, configuration and testing. The book covers dozens of applications, with solutions for each application provided. Volume Two focuses on small batteries in consumer products and power banks, as well as large low voltage batteries in stationary or mobile house power, telecom, residential, marine and microgrid. Traction batteries, including passenger, industrial, race vehicles, public transit, marine, submarine and aircraft are also discussed. High voltage stationary batteries grid-tied and off-grid are presented, exploring their use in grid quality, arbitrage and back-up, residential, microgrid, industrial, office buildings. Finally, the book explores what happens when accidents occur, so readers may avoid these mistakes. Written by a prominent expert in the field and packed with over 500 illustrations, these volumes contain solutions to practical problems, making it useful for both the novice and experienced practitioners.
Battery Management Systems for Large Lithium Ion Battery Packs
Author: Davide Andrea
Publisher: Artech House
ISBN: 1608071057
Category : Battery chargers
Languages : en
Pages : 302
Book Description
This timely book provides you with a solid understanding of battery management systems (BMS) in large Li-Ion battery packs, describing the important technical challenges in this field and exploring the most effective solutions. You find in-depth discussions on BMS topologies, functions, and complexities, helping you determine which permutation is right for your application. Packed with numerous graphics, tables, and images, the book explains the OC whysOCO and OC howsOCO of Li-Ion BMS design, installation, configuration and troubleshooting. This hands-on resource includes an unbiased description and comparison of all the off-the-shelf Li-Ion BMSs available today. Moreover, it explains how using the correct one for a given application can help to get a Li-Ion pack up and running in little time at low cost."
Publisher: Artech House
ISBN: 1608071057
Category : Battery chargers
Languages : en
Pages : 302
Book Description
This timely book provides you with a solid understanding of battery management systems (BMS) in large Li-Ion battery packs, describing the important technical challenges in this field and exploring the most effective solutions. You find in-depth discussions on BMS topologies, functions, and complexities, helping you determine which permutation is right for your application. Packed with numerous graphics, tables, and images, the book explains the OC whysOCO and OC howsOCO of Li-Ion BMS design, installation, configuration and troubleshooting. This hands-on resource includes an unbiased description and comparison of all the off-the-shelf Li-Ion BMSs available today. Moreover, it explains how using the correct one for a given application can help to get a Li-Ion pack up and running in little time at low cost."
Lithium
Author: Ron Legarski
Publisher: SolveForce
ISBN:
Category : Business & Economics
Languages : en
Pages : 716
Book Description
Lithium: From Discovery to Modern Energy Applications is an essential guide to understanding one of the most critical elements driving today’s technological and energy revolutions. Co-authored by experts Ronald Legarski, Yash Patel, and Zoltan Csernus, this comprehensive book delves into lithium’s journey from its discovery to its widespread use in electric vehicles, renewable energy storage, and consumer electronics. The book explores lithium's unique properties, the evolution of lithium-ion battery technology, and its vital role in shaping the future of clean energy. With insights into lithium mining and production, environmental and geopolitical challenges, and innovations in energy storage, this work is a definitive resource for anyone interested in the future of energy and technology. Ronald Legarski, President & CEO of SolveForce, brings decades of experience in telecommunications and energy infrastructure, highlighting how lithium powers modern connectivity and smart grid technologies. Yash Patel, nuclear engineer and founder of NanoGate Technologies, provides his expertise in advanced technologies, including nuclear energy and biopharma, offering insights into lithium's broader industrial applications. Zoltan Csernus, master electrician and owner of CZ Electric, contributes his four decades of experience in electrical engineering, focusing on lithium’s role in power quality and energy storage solutions. Whether you are a scientist, engineer, industry professional, or simply curious about the future of clean energy, Lithium: From Discovery to Modern Energy Applications provides an accessible and detailed look at how lithium is transforming industries and enabling a sustainable future.
Publisher: SolveForce
ISBN:
Category : Business & Economics
Languages : en
Pages : 716
Book Description
Lithium: From Discovery to Modern Energy Applications is an essential guide to understanding one of the most critical elements driving today’s technological and energy revolutions. Co-authored by experts Ronald Legarski, Yash Patel, and Zoltan Csernus, this comprehensive book delves into lithium’s journey from its discovery to its widespread use in electric vehicles, renewable energy storage, and consumer electronics. The book explores lithium's unique properties, the evolution of lithium-ion battery technology, and its vital role in shaping the future of clean energy. With insights into lithium mining and production, environmental and geopolitical challenges, and innovations in energy storage, this work is a definitive resource for anyone interested in the future of energy and technology. Ronald Legarski, President & CEO of SolveForce, brings decades of experience in telecommunications and energy infrastructure, highlighting how lithium powers modern connectivity and smart grid technologies. Yash Patel, nuclear engineer and founder of NanoGate Technologies, provides his expertise in advanced technologies, including nuclear energy and biopharma, offering insights into lithium's broader industrial applications. Zoltan Csernus, master electrician and owner of CZ Electric, contributes his four decades of experience in electrical engineering, focusing on lithium’s role in power quality and energy storage solutions. Whether you are a scientist, engineer, industry professional, or simply curious about the future of clean energy, Lithium: From Discovery to Modern Energy Applications provides an accessible and detailed look at how lithium is transforming industries and enabling a sustainable future.
Long Hard Road
Author: Charles J. Murray
Publisher: Purdue University Press
ISBN: 1612497632
Category : Technology & Engineering
Languages : en
Pages : 223
Book Description
Long Hard Road: The Lithium-Ion Battery and the Electric Car provides an inside look at the birth of the lithium-ion battery, from its origins in academic labs around the world to its transition to its new role as the future of automotive power. It chronicles the piece-by-piece development of the battery, from its early years when it was met by indifference from industry to its later emergence in Japan where it served in camcorders, laptops, and cell phones. The book is the first to provide a glimpse inside the Japanese corporate culture that turned the lithium-ion chemistry into a commercial product. It shows the intense race between two companies, Asahi Chemical and Sony Corporation, to develop a suitable anode. It also explains, for the first time, why one Japanese manufacturer had to build its first preproduction cells in a converted truck garage in Boston, Massachusetts. Building on that history, Long Hard Road then takes readers inside the auto industry to show how lithium-ion solved the problems of earlier battery chemistries and transformed the electric car into a viable competitor. Starting with the Henry Ford and Thomas Edison electric car of 1914, it chronicles a long list of automotive failures, then shows how a small California car converter called AC Propulsion laid the foundation for a revolution by packing its car with thousands of tiny lithium-ion cells. The book then takes readers inside the corporate board rooms of Detroit to show how mainstream automakers finally decided to adopt lithium-ion. Long Hard Road is unique in its telling of the lithium-ion tale, revealing that the battery chemistry was not the product of a single inventor, nor the dream of just three Nobel Prize winners, but rather was the culmination of dozens of scientific breakthroughs from many inventors whose work was united to create a product that ultimately changed the world.
Publisher: Purdue University Press
ISBN: 1612497632
Category : Technology & Engineering
Languages : en
Pages : 223
Book Description
Long Hard Road: The Lithium-Ion Battery and the Electric Car provides an inside look at the birth of the lithium-ion battery, from its origins in academic labs around the world to its transition to its new role as the future of automotive power. It chronicles the piece-by-piece development of the battery, from its early years when it was met by indifference from industry to its later emergence in Japan where it served in camcorders, laptops, and cell phones. The book is the first to provide a glimpse inside the Japanese corporate culture that turned the lithium-ion chemistry into a commercial product. It shows the intense race between two companies, Asahi Chemical and Sony Corporation, to develop a suitable anode. It also explains, for the first time, why one Japanese manufacturer had to build its first preproduction cells in a converted truck garage in Boston, Massachusetts. Building on that history, Long Hard Road then takes readers inside the auto industry to show how lithium-ion solved the problems of earlier battery chemistries and transformed the electric car into a viable competitor. Starting with the Henry Ford and Thomas Edison electric car of 1914, it chronicles a long list of automotive failures, then shows how a small California car converter called AC Propulsion laid the foundation for a revolution by packing its car with thousands of tiny lithium-ion cells. The book then takes readers inside the corporate board rooms of Detroit to show how mainstream automakers finally decided to adopt lithium-ion. Long Hard Road is unique in its telling of the lithium-ion tale, revealing that the battery chemistry was not the product of a single inventor, nor the dream of just three Nobel Prize winners, but rather was the culmination of dozens of scientific breakthroughs from many inventors whose work was united to create a product that ultimately changed the world.