Limitations to Plant Diversity and Productivity in Restored Tallgrass Prairie PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Limitations to Plant Diversity and Productivity in Restored Tallgrass Prairie PDF full book. Access full book title Limitations to Plant Diversity and Productivity in Restored Tallgrass Prairie by . Download full books in PDF and EPUB format.

Limitations to Plant Diversity and Productivity in Restored Tallgrass Prairie

Limitations to Plant Diversity and Productivity in Restored Tallgrass Prairie PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Approximately 96% of native tallgrass prairie in North America has been lost, which accentuates the need for effective methods to restore the structure and function of these degraded ecosystems. Many prairie restorations aim to restore grass and forb species in proportions reflecting plant species diversity in native prairie. A target grass-forb species mixture is typically chosen at the onset of restoration, but often, grasses become excessively dominant and forbs are underrepresented as the community develops. Several studies have examined the potential for increasing forb cover and diversity in newly restored grasslands, but few studies have assessed factors limiting forb cover and diversity in well-established grass-dominated prairie restorations. The primary objective of this research was to assess the potential for enhancing plant species diversity and productivity in an established grass-dominated prairie restoration by selective removals of dominant grass species, and by manipulating resources (soil nutrients, light availability) or mycorrhizal interactions. A 7-year old grass-dominated restoration was used to evaluate plant and soil responses to manipulations in three separate studies. The first study examined the potential suppressive effects of dominant grasses on plant diversity by reducing the cover and biomass of two dominant grass species, Andropogon gerardii and Panicum virgatum. After 3 years, the removal of A. gerardii increased species richness and diversity, which was correlated with increased light availability, but not changes in soil resources. The second study examined the responses of restored grassland communities to long-term manipulation of soil resources (nutrient availability or soil depth), and to aboveground biomass removal via mowing. The long-term manipulation of soil resources did not alter plant species diversity, but nitrogen and light availability were important factors regulating plant productivity. The third study assessed the effects of manipulating arbuscular mycorrhizal (AM) fungi, through the use of either commercial inoculum or fungicide, on plant communities in restored prairie. Mycorrhizal suppression reduced grass productivity, suggesting that fungicide may be useful for enhancing diversity of restored prairies that are dominated by obligate mycotrophic grasses. In total, these studies suggest that competition between dominant grasses and subordinate forbs limits plant diversity in restored tallgrass prairie.

Limitations to Plant Diversity and Productivity in Restored Tallgrass Prairie

Limitations to Plant Diversity and Productivity in Restored Tallgrass Prairie PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Approximately 96% of native tallgrass prairie in North America has been lost, which accentuates the need for effective methods to restore the structure and function of these degraded ecosystems. Many prairie restorations aim to restore grass and forb species in proportions reflecting plant species diversity in native prairie. A target grass-forb species mixture is typically chosen at the onset of restoration, but often, grasses become excessively dominant and forbs are underrepresented as the community develops. Several studies have examined the potential for increasing forb cover and diversity in newly restored grasslands, but few studies have assessed factors limiting forb cover and diversity in well-established grass-dominated prairie restorations. The primary objective of this research was to assess the potential for enhancing plant species diversity and productivity in an established grass-dominated prairie restoration by selective removals of dominant grass species, and by manipulating resources (soil nutrients, light availability) or mycorrhizal interactions. A 7-year old grass-dominated restoration was used to evaluate plant and soil responses to manipulations in three separate studies. The first study examined the potential suppressive effects of dominant grasses on plant diversity by reducing the cover and biomass of two dominant grass species, Andropogon gerardii and Panicum virgatum. After 3 years, the removal of A. gerardii increased species richness and diversity, which was correlated with increased light availability, but not changes in soil resources. The second study examined the responses of restored grassland communities to long-term manipulation of soil resources (nutrient availability or soil depth), and to aboveground biomass removal via mowing. The long-term manipulation of soil resources did not alter plant species diversity, but nitrogen and light availability were important factors regulating plant productivity. The third study assessed the effects of manipulating arbuscular mycorrhizal (AM) fungi, through the use of either commercial inoculum or fungicide, on plant communities in restored prairie. Mycorrhizal suppression reduced grass productivity, suggesting that fungicide may be useful for enhancing diversity of restored prairies that are dominated by obligate mycotrophic grasses. In total, these studies suggest that competition between dominant grasses and subordinate forbs limits plant diversity in restored tallgrass prairie.

Tallgrass Prairie Restoration in the Midwestern and Eastern United States

Tallgrass Prairie Restoration in the Midwestern and Eastern United States PDF Author: Harold Gardner
Publisher: Springer Science & Business Media
ISBN: 144197427X
Category : Science
Languages : en
Pages : 291

Book Description
This work advocates the restoration of the North American tallgrass prairie, which is rapidly disappearing. Historical descriptions of prairie aesthetics are outlined. As we are experiencing a worldwide mixing of plant species, prairie restoration is particularly important. Plants alien to North America do not readily support insect populations, including all animal species higher on the food chain. Prairie restoration methods are described for amateurs, academics, and land managers. Some of the techniques described are growing crops for seed production, times of seed gathering for specific species, facile seed processing for amateurs, land preparation, segregation of seed into its preference for habitat, and required seed treatment for germination. Over 200 species are described that comprise the predominant species found in tallgrass prairie nature preserves, as well as degraded prairies. Some additional plants of especial interest are also described. The appendix tabulates all likely species found on prairies regardless of their scarcity. Safe fire management of prairies is described in detail. Finally, methods of controlling aggressive alien weeds by herbicides are detailed.

Effects of Management on Functional Diversity in Restored Tallgrass Prairie Plant Communities

Effects of Management on Functional Diversity in Restored Tallgrass Prairie Plant Communities PDF Author: Anna K. Farrell
Publisher:
ISBN: 9780438855007
Category : Botany
Languages : en
Pages : 61

Book Description
While recent studies have embraced evaluating ecosystems through functional diversity, the focus on interspecific trait changes may limit their usefulness and application. Functional traits (traits that explain species' responses to environmental conditions and their ecosystem roles) can provide a more nuanced understanding of how disturbances shape plant communities and the functions they perform. Further, the inclusion of intraspecific trait responses can explain a significant portion of these relationships. In ecosystem restorations, management strategies can act as environmental drivers and disturbances that affect community structure. This study examined how three environmental drivers (grazer presence, prescribed fire, and age) in restored grasslands influence plant functional trait diversity and values and if these influences differ when intraspecific trait variation is incorporated. Further, relationships between functional characteristics of communities and an ecosystem function, aboveground productivity, were measured. Functional diversity consistently decreased with age across multiple functional diversity metrics, both when using fixed trait values and intraspecific trait variation. Increased functional diversity, measured as functional evenness, promoted productivity, but both evenness and productivity declined with site age. This functional diversity and ecosystem function relationship was only observed when using intraspecific trait data, emphasizing the importance of accounting for plasticity in functional ecology studies. These results of this study support the environment-trait-function framework and demonstrate the importance of intraspecific trait variation. In ecosystems with weaker environmental gradients, the inclusion of intraspecific changes may be more influential than species turnover in identifying functional diversity and ecosystem function responses. Accounting for this source of variation may improve predictive models and general community ecology rules. Additionally, testing ecology principles in the context of restoration and identifying community responses to disturbances is critical for improving the predictability and success of restoration outcomes.

Community and Ecosystem Changes in Tallgrass Prairie Restorations

Community and Ecosystem Changes in Tallgrass Prairie Restorations PDF Author: Ryan P. Klopf
Publisher:
ISBN:
Category :
Languages : en
Pages : 512

Book Description
The overall objective of this study was to quantify the effects of dominant grass propagule source (i.e., cultivar vs. non-cultivar) and seeded diversity of propagules on community structure and ecosystem function during prairie restoration. Two field experiments, and two chronosequences were used to investigate this main objective. The two field experiments were established at the same latitude separated by 620 km (corresponding to a precipitation gradient from eastern Kansas to western Illinois), and consisted of a split plot design, with dominant grass source as the whole-plot factor (2 levels) and seeded dominance of grasses as the subplot factor (5 levels). Percent cover of each species in each treatment combination was quantified during the first five years of restoration. Total plant species richness and diversity were not adversely affected by cultivars in Kansas or Illinois. The effect of the dominant grass population source on the cover of focal grasses, planted species, and volunteer species were contingent upon location. By the fifth year of restoration, diversity and richness were greatest, and cover of volunteer species was lowest in the low grass dominance (i.e., high diversity) treatment. ANPP, as well as total, microbial, and mineralizable pools of C and N were measured to quantify ecosystem function in these two field experiments. Changes in ecosystem function in Kansas and Illinois were primarily driven by time and regional abiotic differences, not propagule source or seeded diversity. The effect of plant species diversity on ecosystem function was further investigated at a landscape scale by developing and sampling two chronosequences of high (HDC; n=20) and low diversity (LDC; n=15) prairies spanning over two decades of restoration in northwestern Illinois. In general most metrics of ecosystem function in both chronosequences moved towards levels measured in remnant prairies. While the constituent prairies of the HDC had higher species richness, diversity, and more rapidly increasing root biomass than the fields of the LDC, recovery of other important ecosystem functions including aboveground net primary productivity, total, microbial, and mineralizable soil C, and soil aggregate mean weighted diameter were achieved equally well with either high or low diversity prairie plantings.

Tallgrass Prairie Restoration in the Midwestern and Eastern United States

Tallgrass Prairie Restoration in the Midwestern and Eastern United States PDF Author: Harold Gardner
Publisher: Springer
ISBN: 9781441974266
Category : Science
Languages : en
Pages : 276

Book Description
This work advocates the restoration of the North American tallgrass prairie, which is rapidly disappearing. Historical descriptions of prairie aesthetics are outlined. As we are experiencing a worldwide mixing of plant species, prairie restoration is particularly important. Plants alien to North America do not readily support insect populations, including all animal species higher on the food chain. Prairie restoration methods are described for amateurs, academics, and land managers. Some of the techniques described are growing crops for seed production, times of seed gathering for specific species, facile seed processing for amateurs, land preparation, segregation of seed into its preference for habitat, and required seed treatment for germination. Over 200 species are described that comprise the predominant species found in tallgrass prairie nature preserves, as well as degraded prairies. Some additional plants of especial interest are also described. The appendix tabulates all likely species found on prairies regardless of their scarcity. Safe fire management of prairies is described in detail. Finally, methods of controlling aggressive alien weeds by herbicides are detailed.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 800

Book Description


The Tallgrass Restoration Handbook

The Tallgrass Restoration Handbook PDF Author: Stephen Packard
Publisher:
ISBN:
Category : Nature
Languages : en
Pages : 504

Book Description
This hands-on manual provides a detailed account of what has been learned about the art and science of prairie restoration and the application of that knowledge to restoration projects throughout the world. The book explores a myriad of restoration philosophies and techniques and is an essential resource for anyone working to nurture our once-vibrant native landscapes to a state of health.

The Evolutionary Strategies that Shape Ecosystems

The Evolutionary Strategies that Shape Ecosystems PDF Author: J. Philip Grime
Publisher: John Wiley & Sons
ISBN: 1118223276
Category : Science
Languages : en
Pages : 362

Book Description
THE EVOLUTIONARY STRATEGIES THAT SHAPE ECOSYSTEMS In 1837 a young Charles Darwin took his notebook, wrote “I think”, and then sketched a rudimentary, stick-like tree. Each branch of Darwin’s tree of life told a story of survival and adaptation – adaptation of animals and plants not just to the environment but also to life with other living things. However, more than 150 years since Darwin published his singular idea of natural selection, the science of ecology has yet to account for how contrasting evolutionary outcomes affect the ability of organisms to coexist in communities and to regulate ecosystem functioning. In this book Philip Grime and Simon Pierce explain how evidence from across the world is revealing that, beneath the wealth of apparently limitless and bewildering variation in detailed structure and functioning, the essential biology of all organisms is subject to the same set of basic interacting constraints on life-history and physiology. The inescapable resulting predicament during the evolution of every species is that, according to habitat, each must adopt a predictable compromise with regard to how they use the resources at their disposal in order to survive. The compromise involves the investment of resources in either the effort to acquire more resources, the tolerance of factors that reduce metabolic performance, or reproduction. This three-way trade-off is the irreducible core of the universal adaptive strategy theory which Grime and Pierce use to investigate how two environmental filters selecting, respectively, for convergence and divergence in organism function determine the identity of organisms in communities, and ultimately how different evolutionary strategies affect the functioning of ecosystems. This book refl ects an historic phase in which evolutionary processes are finally moving centre stage in the effort to unify ecological theory, and animal, plant and microbial ecology have begun to find a common theoretical framework. Companion website This book has a companion website www.wiley.com/go/grime/evolutionarystrategies with Figures and Tables from the book for downloading.

How Does Your Prairie (re)grow?

How Does Your Prairie (re)grow? PDF Author: Nicole Lynn Stanton
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Temperate grasslands are among the most threatened biomes in the world, with the largest historical losses due to conversion to agricultural land. While much of this biome has already been converted, there is concern the last remaining remnants in North America will be converted in response to increasing demand for crops used for ethanol production. Thus, restoring grasslands post-anthropogenic disturbance is increasingly important for conserving grassland biodiversity. Two major challenges for prairie restorations are establishing the many subdominant and rarer species found in native prairie, and offsetting the typical decline in richness and diversity over time as restorations age. Repeated seed addition of targeted species is commonly used to override low and declining plant richness and diversity. While this is generally effective early in restoration (i.e., as communities are establishing), its effectiveness in later stages (i.e., when established communities are often losing diversity) remains unknown. I investigated plant community responses to combinations of resource manipulations and disturbances coupled with a seed addition in a 15-yr old restored grassland to test the hypothesis that spatial resource heterogeneity increases the rate of colonization into established prairie restoration communities. Seeds were added to a long-term restoration experiment involving soil depth manipulations (deep, shallow) crossed with nutrient manipulations (reduced N, ambient N, enriched N). Seedling emergence was generally low and only 8 of the 14 forb species added were detected in the first growing season. I found no effect of increased resource heterogeneity on the abundance or richness of seedlings. There was a significant nutrient effect (p

Environmental and Biotic Processes Influencing Floristic Composition, Quality, Integrity, and Function in Tallgrass Prairie Assemblages

Environmental and Biotic Processes Influencing Floristic Composition, Quality, Integrity, and Function in Tallgrass Prairie Assemblages PDF Author: George Charles Manning (IV)
Publisher:
ISBN:
Category : Biotic communities
Languages : en
Pages : 272

Book Description
Tallgrass prairie is one of the most threatened grasslands in North America. Conservation of tallgrass prairie focuses on both effective management of remaining native prairie, and restoration of formerly cultivated fields to tallgrass prairie. This research focused on processes and properties relevant to restoration and conservation of tallgrass prairie. Community assembly theory attempts to explain the formation of communities, which can be governed by deterministic or stochastic processes, or some combination of both. Fire and grazing are widely used to manage grasslands for conservation purposes, but few studies have evaluated the effects of these drivers on the conservation value of plant communities measured by the floristic quality index. Pollination services play a vital role in the reproductive stability of the plant community in prairies, though this has not been well studied in restored prairie. The first chapter of this dissertation reports on a sequential restoration approach used to gain insights into the extent to which community assembly is deterministic and stochastic events change the trajectory of community development. The sequential restorations consisted of former agriculture fields restored to prairie, varying only in time since abandonment. Species composition and aboveground net primary production were quantified over time in sequentially restored communities to reveal the predictability of ecological restoration in producing desired communities and ecosystem functions. The sequential restoration plots were established in a block design. The same suite of species was seeded using the same seeding rates in each restoration sequence. Species composition was recorded each September in the year of seeding and each June and September in the two subsequent years for each block. Annual aboveground net primary productivity was collected from 2 randomly placed 0.1 m2 plots per subplot during peak biomass. There was a significant sequence by age interaction for sown, volunteer, and total species composition. Sown, volunteer, and total cover, diversity, and richness also were affected by a sequence by age interaction. Annual net primary production (ANPP) also was affected by a sequence by age interaction for sown and volunteer species. However, total ANPP was only affected by the variable age. Results show that interannual climate variability (specifically growing season precipitation) inhibits a priori determinations of community assembly, which suggests that stochastic processes play a significant role in the community assembly process in tallgrass prairie restoration. Variations in annual precipitation during the installation years likely drove the initial differences in species composition and ANPP. In general this study revealed that drought conditions at the time of restoration may be more deleterious than drought conditions occurring at other times post-establishment. The influence of fire and grazing on soil properties and functions is difficult for land managers and restoration practitioners to assess. Therefore, the objectives for the second study were to (i) to quantify the independent and interactive effects of grazing and fire frequency on floristic quality in native tallgrass prairie, and provide potential benchmarks for community assessment, and (ii) to explore whether floristic quality can serve as an indicator of soil structure and function for more holistic ecosystem assessments. A factorial combination of fire frequencies (1-2, 4, and 20 y return intervals) and grazing (by bison or ungrazed) treatments was sampled for plant species composition and several indicators of soil quality in lowland tallgrass prairie. Floristic quality, diversity, and richness were higher in grazed than ungrazed prairie over all fire frequencies. Available inorganic N, microbial biomass N, total soil N, and soil bulk density were also higher in grazed prairie soil over all fire frequencies. Microbial biomass C, total soil organic C, and total soil N were positively correlated with FQI. This study demonstrated that floristic quality and soil N pools are more strongly influenced by grazing than fire and that floristic quality can be an indicator of total soil C and N stocks in never cultivated lowland prairie. In tallgrass prairie, 85-90 % of angiosperms require an insect or other animal for pollen transfer. Restorations can play a vital role in the reestablishment of pollination services and simultaneously help maintain high levels of diversity in the tallgrass prairie ecosystem. Missed pollination, via temporal asynchronies, could have a number of biological disadvantages for a plant population. In the third study we addressed the effects of missed pollination on floral period, photosynthetic activity, leaf N content, and seed set in a common native tallgrass prairie forb, Penstemon digitalis . In each of 12 plots, 6 individual plants were either bagged to prevent pollination, or left unbagged, to allow for pollination. There was no difference in mean flower duration between netted and open plots. There was a treatment by time interaction for relative chlorophyll concentrations (P = 0.0005). (Abstract shortened by ProQuest.)