Lectures on Stochastic Flows and Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Lectures on Stochastic Flows and Applications PDF full book. Access full book title Lectures on Stochastic Flows and Applications by H. Kunita. Download full books in PDF and EPUB format.

Lectures on Stochastic Flows and Applications

Lectures on Stochastic Flows and Applications PDF Author: H. Kunita
Publisher:
ISBN:
Category : Flows (Differentiable dynamical systems).
Languages : en
Pages : 144

Book Description


Lectures on Stochastic Flows and Applications

Lectures on Stochastic Flows and Applications PDF Author: H. Kunita
Publisher:
ISBN:
Category : Flows (Differentiable dynamical systems).
Languages : en
Pages : 144

Book Description


Stochastic Flows and Stochastic Differential Equations

Stochastic Flows and Stochastic Differential Equations PDF Author: Hiroshi Kunita
Publisher: Cambridge University Press
ISBN: 9780521599252
Category : Mathematics
Languages : en
Pages : 364

Book Description
The main purpose of this book is to give a systematic treatment of the theory of stochastic differential equations and stochastic flow of diffeomorphisms, and through the former to study the properties of stochastic flows.The classical theory was initiated by K. Itô and since then has been much developed. Professor Kunita's approach here is to regard the stochastic differential equation as a dynamical system driven by a random vector field, including thereby Itô's theory as a special case. The book can be used with advanced courses on probability theory or for self-study.

An Introduction to the Geometry of Stochastic Flows

An Introduction to the Geometry of Stochastic Flows PDF Author: Fabrice Baudoin
Publisher: World Scientific
ISBN: 1860944817
Category : Mathematics
Languages : en
Pages : 152

Book Description
This book aims to provide a self-contained introduction to the local geometry of the stochastic flows associated with stochastic differential equations. It stresses the view that the local geometry of any stochastic flow is determined very precisely and explicitly by a universal formula referred to as the Chen-Strichartz formula. The natural geometry associated with the Chen-Strichartz formula is the sub-Riemannian geometry whose main tools are introduced throughout the text. By using the connection between stochastic flows and partial differential equations, we apply this point of view of the study of hypoelliptic operators written in Hormander's form.

Diffusion Processes and Related Problems in Analysis, Volume II

Diffusion Processes and Related Problems in Analysis, Volume II PDF Author: V. Wihstutz
Publisher: Springer Science & Business Media
ISBN: 1461203899
Category : Mathematics
Languages : en
Pages : 344

Book Description
During the weekend of March 16-18, 1990 the University of North Carolina at Charlotte hosted a conference on the subject of stochastic flows, as part of a Special Activity Month in the Department of Mathematics. This conference was supported jointly by a National Science Foundation grant and by the University of North Carolina at Charlotte. Originally conceived as a regional conference for researchers in the Southeastern United States, the conference eventually drew participation from both coasts of the U. S. and from abroad. This broad-based par ticipation reflects a growing interest in the viewpoint of stochastic flows, particularly in probability theory and more generally in mathematics as a whole. While the theory of deterministic flows can be considered classical, the stochastic counterpart has only been developed in the past decade, through the efforts of Harris, Kunita, Elworthy, Baxendale and others. Much of this work was done in close connection with the theory of diffusion processes, where dynamical systems implicitly enter probability theory by means of stochastic differential equations. In this regard, the Charlotte conference served as a natural outgrowth of the Conference on Diffusion Processes, held at Northwestern University, Evanston Illinois in October 1989, the proceedings of which has now been published as Volume I of the current series. Due to this natural flow of ideas, and with the assistance and support of the Editorial Board, it was decided to organize the present two-volume effort.

Stochastic Flows and Jump-Diffusions

Stochastic Flows and Jump-Diffusions PDF Author: Hiroshi Kunita
Publisher: Springer
ISBN: 9811338019
Category : Mathematics
Languages : en
Pages : 366

Book Description
This monograph presents a modern treatment of (1) stochastic differential equations and (2) diffusion and jump-diffusion processes. The simultaneous treatment of diffusion processes and jump processes in this book is unique: Each chapter starts from continuous processes and then proceeds to processes with jumps.In the first part of the book, it is shown that solutions of stochastic differential equations define stochastic flows of diffeomorphisms. Then, the relation between stochastic flows and heat equations is discussed. The latter part investigates fundamental solutions of these heat equations (heat kernels) through the study of the Malliavin calculus. The author obtains smooth densities for transition functions of various types of diffusions and jump-diffusions and shows that these density functions are fundamental solutions for various types of heat equations and backward heat equations. Thus, in this book fundamental solutions for heat equations and backward heat equations are constructed independently of the theory of partial differential equations.Researchers and graduate student in probability theory will find this book very useful.

Lectures on Stochastic Flows and Applications

Lectures on Stochastic Flows and Applications PDF Author: H. Kunita
Publisher: Springer
ISBN: 9783540177753
Category : Science
Languages : en
Pages : 121

Book Description
These are the notes of a lecture course given by the author at the T.I.F.R. Centre, Bangalore in late 1985. The contents are divided into three chapters concluding with an extensive bibliography. Chapters 1 and 2 deal with basic properties of stochastic flows and especially of Brownian flows and their relations with local characteristics and stochastic differential equations. An appendix on the generalized Ito#^ formula, Stratonovich integral and Stratonovich stochastic differential equations has been added to Chapter 2. By the way of applications of the foregoing, limit theorems for stochastic flows, along with a unifying general limit theorem, are then presented in Chapter 3 including: - Approximation theorems for stochastic differential equations and stochastic flows, due to Bismut, Ikeda-Watanabe, Malliavin, Dowell etc. - Limit theorems for driving processes, due to Papanicolaou-Stroock-Varadhan, and - Limit theorems for stochastic differential equations, due to Khasminkii, Papanicolaou-Kohler, Kesten-Papanicolaou etc.

Lectures on Topics in Stochastic Differential Equations

Lectures on Topics in Stochastic Differential Equations PDF Author: Daniel W. Stroock
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 120

Book Description


Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications

Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications PDF Author: Rene Carmona
Publisher: SIAM
ISBN: 1611974240
Category : Mathematics
Languages : en
Pages : 263

Book Description
The goal of this textbook is to introduce students to the stochastic analysis tools that play an increasing role in the probabilistic approach to optimization problems, including stochastic control and stochastic differential games. While optimal control is taught in many graduate programs in applied mathematics and operations research, the author was intrigued by the lack of coverage of the theory of stochastic differential games. This is the first title in SIAM?s Financial Mathematics book series and is based on the author?s lecture notes. It will be helpful to students who are interested in stochastic differential equations (forward, backward, forward-backward); the probabilistic approach to stochastic control (dynamic programming and the stochastic maximum principle); and mean field games and control of McKean?Vlasov dynamics. The theory is illustrated by applications to models of systemic risk, macroeconomic growth, flocking/schooling, crowd behavior, and predatory trading, among others.

On the Geometry of Diffusion Operators and Stochastic Flows

On the Geometry of Diffusion Operators and Stochastic Flows PDF Author: K.D. Elworthy
Publisher: Springer
ISBN: 3540470220
Category : Mathematics
Languages : en
Pages : 121

Book Description
Stochastic differential equations, and Hoermander form representations of diffusion operators, can determine a linear connection associated to the underlying (sub)-Riemannian structure. This is systematically described, together with its invariants, and then exploited to discuss qualitative properties of stochastic flows, and analysis on path spaces of compact manifolds with diffusion measures. This should be useful to stochastic analysts, especially those with interests in stochastic flows, infinite dimensional analysis, or geometric analysis, and also to researchers in sub-Riemannian geometry. A basic background in differential geometry is assumed, but the construction of the connections is very direct and itself gives an intuitive and concrete introduction. Knowledge of stochastic analysis is also assumed for later chapters.

Stochastics And Quantum Mechanics

Stochastics And Quantum Mechanics PDF Author: Ian M Davies
Publisher: World Scientific
ISBN: 9814554731
Category :
Languages : en
Pages : 326

Book Description
This volume contains papers which were presented at a series of short meetings collectively entitled “Stochastics and Quantum Mechanics” held in Swansea over the summer of 1990. Also included are some papers not presented at the meetings, but in the same subject area, authored by attendees or their co-workers. The topics covered include diffusion processes, stochastic mechanics, statistical mechanics, large deviations and Wiener-Hopf theory.The papers are in the main immediately accessible to workers in the field and provide a reasonable coverage of current areas of interest centering around uses of probabilistic methods in mathematical physics.