Author: Benjamin Klopsch
Publisher: Cambridge University Press
ISBN: 1139495658
Category : Mathematics
Languages : en
Pages : 175
Book Description
In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. The final chapter provides an overview of zeta functions associated to groups and rings. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory.
Lectures on Profinite Topics in Group Theory
Author: Benjamin Klopsch
Publisher: Cambridge University Press
ISBN: 1139495658
Category : Mathematics
Languages : en
Pages : 175
Book Description
In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. The final chapter provides an overview of zeta functions associated to groups and rings. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory.
Publisher: Cambridge University Press
ISBN: 1139495658
Category : Mathematics
Languages : en
Pages : 175
Book Description
In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. The final chapter provides an overview of zeta functions associated to groups and rings. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory.
Profinite Groups
Author: John S. Wilson
Publisher: Clarendon Press
ISBN: 0191589217
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is the first book to be dedicated entirely to profinite groups, an area of algebra with important links to number theory and other areas of mathematics. It provides a comprehensive overview of the subject; prerequisite knowledge is kept to a minimum, and several major theorems are presented in an accessible form. The book would provide a valuable introduction for postgraduate students, or form a useful reference for researchers in other areas. The first few chapters lay the foundations and explain the role of profinite groups in number theory. Later chapters explore various aspects of profinite groups in more detail; these contain accessible and lucid accounts of many major theorems. Prerequisites are kept to a minimum with the basic topological theory summarized in an introductory chapter.
Publisher: Clarendon Press
ISBN: 0191589217
Category : Mathematics
Languages : en
Pages : 302
Book Description
This is the first book to be dedicated entirely to profinite groups, an area of algebra with important links to number theory and other areas of mathematics. It provides a comprehensive overview of the subject; prerequisite knowledge is kept to a minimum, and several major theorems are presented in an accessible form. The book would provide a valuable introduction for postgraduate students, or form a useful reference for researchers in other areas. The first few chapters lay the foundations and explain the role of profinite groups in number theory. Later chapters explore various aspects of profinite groups in more detail; these contain accessible and lucid accounts of many major theorems. Prerequisites are kept to a minimum with the basic topological theory summarized in an introductory chapter.
Lectures on Profinite Topics in Group Theory
Author: Benjamin Klopsch
Publisher: Cambridge University Press
ISBN: 9780521183017
Category : Mathematics
Languages : en
Pages : 158
Book Description
'In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory.'
Publisher: Cambridge University Press
ISBN: 9780521183017
Category : Mathematics
Languages : en
Pages : 158
Book Description
'In this book, three authors introduce readers to strong approximation methods, analytic pro-p groups and zeta functions of groups. Each chapter illustrates connections between infinite group theory, number theory and Lie theory. The first introduces the theory of compact p-adic Lie groups. The second explains how methods from linear algebraic groups can be utilised to study the finite images of linear groups. Derived from an LMS/EPSRC Short Course for graduate students, this book provides a concise introduction to a very active research area and assumes less prior knowledge than existing monographs or original research articles. Accessible to beginning graduate students in group theory, it will also appeal to researchers interested in infinite group theory and its interface with Lie theory and number theory.'
Lectures on Lagrangian Torus Fibrations
Author: Jonny Evans
Publisher: Cambridge University Press
ISBN: 1009372661
Category : Mathematics
Languages : en
Pages : 242
Book Description
Symington's almost toric fibrations have played a central role in symplectic geometry over the past decade, from Vianna's discovery of exotic Lagrangian tori to recent work on Fibonacci staircases. Four-dimensional spaces are of relevance in Hamiltonian dynamics, algebraic geometry, and mathematical string theory, and these fibrations encode the geometry of a symplectic 4-manifold in a simple 2-dimensional diagram. This text is a guide to interpreting these diagrams, aimed at graduate students and researchers in geometry and topology. First the theory is developed, and then studied in many examples, including fillings of lens spaces, resolutions of cusp singularities, non-toric blow-ups, and Vianna tori. In addition to the many examples, students will appreciate the exercises with full solutions throughout the text. The appendices explore select topics in more depth, including tropical Lagrangians and Markov triples, with a final appendix listing open problems. Prerequisites include familiarity with algebraic topology and differential geometry.
Publisher: Cambridge University Press
ISBN: 1009372661
Category : Mathematics
Languages : en
Pages : 242
Book Description
Symington's almost toric fibrations have played a central role in symplectic geometry over the past decade, from Vianna's discovery of exotic Lagrangian tori to recent work on Fibonacci staircases. Four-dimensional spaces are of relevance in Hamiltonian dynamics, algebraic geometry, and mathematical string theory, and these fibrations encode the geometry of a symplectic 4-manifold in a simple 2-dimensional diagram. This text is a guide to interpreting these diagrams, aimed at graduate students and researchers in geometry and topology. First the theory is developed, and then studied in many examples, including fillings of lens spaces, resolutions of cusp singularities, non-toric blow-ups, and Vianna tori. In addition to the many examples, students will appreciate the exercises with full solutions throughout the text. The appendices explore select topics in more depth, including tropical Lagrangians and Markov triples, with a final appendix listing open problems. Prerequisites include familiarity with algebraic topology and differential geometry.
The Theory of Near-Rings
Author: Robert Lockhart
Publisher: Springer Nature
ISBN: 3030817555
Category : Mathematics
Languages : en
Pages : 555
Book Description
This book offers an original account of the theory of near-rings, with a considerable amount of material which has not previously been available in book form, some of it completely new. The book begins with an introduction to the subject and goes on to consider the theory of near-fields, transformation near-rings and near-rings hosted by a group. The bulk of the chapter on near-fields has not previously been available in English. The transformation near-rings chapters considerably augment existing knowledge and the chapters on product hosting are essentially new. Other chapters contain original material on new classes of near-rings and non-abelian group cohomology. The Theory of Near-Rings will be of interest to researchers in the subject and, more broadly, ring and representation theorists. The presentation is elementary and self-contained, with the necessary background in group and ring theory available in standard references.
Publisher: Springer Nature
ISBN: 3030817555
Category : Mathematics
Languages : en
Pages : 555
Book Description
This book offers an original account of the theory of near-rings, with a considerable amount of material which has not previously been available in book form, some of it completely new. The book begins with an introduction to the subject and goes on to consider the theory of near-fields, transformation near-rings and near-rings hosted by a group. The bulk of the chapter on near-fields has not previously been available in English. The transformation near-rings chapters considerably augment existing knowledge and the chapters on product hosting are essentially new. Other chapters contain original material on new classes of near-rings and non-abelian group cohomology. The Theory of Near-Rings will be of interest to researchers in the subject and, more broadly, ring and representation theorists. The presentation is elementary and self-contained, with the necessary background in group and ring theory available in standard references.
Notes on Hamiltonian Dynamical Systems Notes on Hamiltonian Dynamical Systems
Author: Antonio Giorgilli
Publisher: Cambridge University Press
ISBN: 100917486X
Category : Science
Languages : en
Pages : 474
Book Description
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Publisher: Cambridge University Press
ISBN: 100917486X
Category : Science
Languages : en
Pages : 474
Book Description
Starting with the basics of Hamiltonian dynamics and canonical transformations, this text follows the historical development of the theory culminating in recent results: the Kolmogorov–Arnold–Moser theorem, Nekhoroshev's theorem and superexponential stability. Its analytic approach allows students to learn about perturbation methods leading to advanced results. Key topics covered include Liouville's theorem, the proof of Poincaré's non-integrability theorem and the nonlinear dynamics in the neighbourhood of equilibria. The theorem of Kolmogorov on persistence of invariant tori and the theory of exponential stability of Nekhoroshev are proved via constructive algorithms based on the Lie series method. A final chapter is devoted to the discovery of chaos by Poincaré and its relations with integrability, also including recent results on superexponential stability. Written in an accessible, self-contained way with few prerequisites, this book can serve as an introductory text for senior undergraduate and graduate students.
Topics in Cyclic Theory
Author: Daniel G. Quillen
Publisher: Cambridge University Press
ISBN: 1108479618
Category : Mathematics
Languages : en
Pages : 331
Book Description
This accessible introduction for Ph.D. students and non-specialists provides Quillen's unique development of cyclic theory.
Publisher: Cambridge University Press
ISBN: 1108479618
Category : Mathematics
Languages : en
Pages : 331
Book Description
This accessible introduction for Ph.D. students and non-specialists provides Quillen's unique development of cyclic theory.
Number Theory, Fourier Analysis and Geometric Discrepancy
Author: Giancarlo Travaglini
Publisher: Cambridge University Press
ISBN: 1107044030
Category : Mathematics
Languages : en
Pages : 251
Book Description
Classical number theory is developed from scratch leading to geometric discrepancy theory, with Fourier analysis introduced along the way.
Publisher: Cambridge University Press
ISBN: 1107044030
Category : Mathematics
Languages : en
Pages : 251
Book Description
Classical number theory is developed from scratch leading to geometric discrepancy theory, with Fourier analysis introduced along the way.
Clifford Algebras: An Introduction
Author: D. J. H. Garling
Publisher: Cambridge University Press
ISBN: 1107096383
Category : Mathematics
Languages : en
Pages : 209
Book Description
A straightforward introduction to Clifford algebras, providing the necessary background material and many applications in mathematics and physics.
Publisher: Cambridge University Press
ISBN: 1107096383
Category : Mathematics
Languages : en
Pages : 209
Book Description
A straightforward introduction to Clifford algebras, providing the necessary background material and many applications in mathematics and physics.
The Block Theory of Finite Group Algebras:
Author: Markus Linckelmann
Publisher: Cambridge University Press
ISBN: 1108589219
Category : Mathematics
Languages : en
Pages : 524
Book Description
This is a comprehensive introduction to the modular representation theory of finite groups, with an emphasis on block theory. The two volumes take into account classical results and concepts as well as some of the modern developments in the area. Volume 1 introduces the broader context, starting with general properties of finite group algebras over commutative rings, moving on to some basics in character theory and the structure theory of algebras over complete discrete valuation rings. In Volume 2, blocks of finite group algebras over complete p-local rings take centre stage, and many key results which have not appeared in a book before are treated in detail. In order to illustrate the wide range of techniques in block theory, the book concludes with chapters classifying the source algebras of blocks with cyclic and Klein four defect groups, and relating these classifications to the open conjectures that drive block theory.
Publisher: Cambridge University Press
ISBN: 1108589219
Category : Mathematics
Languages : en
Pages : 524
Book Description
This is a comprehensive introduction to the modular representation theory of finite groups, with an emphasis on block theory. The two volumes take into account classical results and concepts as well as some of the modern developments in the area. Volume 1 introduces the broader context, starting with general properties of finite group algebras over commutative rings, moving on to some basics in character theory and the structure theory of algebras over complete discrete valuation rings. In Volume 2, blocks of finite group algebras over complete p-local rings take centre stage, and many key results which have not appeared in a book before are treated in detail. In order to illustrate the wide range of techniques in block theory, the book concludes with chapters classifying the source algebras of blocks with cyclic and Klein four defect groups, and relating these classifications to the open conjectures that drive block theory.