Lectures On Fractal Geometry PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Lectures On Fractal Geometry PDF full book. Access full book title Lectures On Fractal Geometry by Martina Zaehle. Download full books in PDF and EPUB format.

Lectures On Fractal Geometry

Lectures On Fractal Geometry PDF Author: Martina Zaehle
Publisher: World Scientific
ISBN: 9811283354
Category : Mathematics
Languages : en
Pages : 141

Book Description
This book is based on a series of lectures at the Mathematics Department of the University of Jena, developed in the period from 1995 up to 2015. It is completed by additional material and extensions of some basic results from the literature to more general metric spaces.This book provides a clear introduction to classical fields of fractal geometry, which provide some background for modern topics of research and applications. Some basic knowledge on general measure theory and on topological notions in metric spaces is presumed.

Lectures On Fractal Geometry

Lectures On Fractal Geometry PDF Author: Martina Zaehle
Publisher: World Scientific
ISBN: 9811283354
Category : Mathematics
Languages : en
Pages : 141

Book Description
This book is based on a series of lectures at the Mathematics Department of the University of Jena, developed in the period from 1995 up to 2015. It is completed by additional material and extensions of some basic results from the literature to more general metric spaces.This book provides a clear introduction to classical fields of fractal geometry, which provide some background for modern topics of research and applications. Some basic knowledge on general measure theory and on topological notions in metric spaces is presumed.

Lectures on Fractal Geometry and Dynamical Systems

Lectures on Fractal Geometry and Dynamical Systems PDF Author: Ya. B. Pesin
Publisher: American Mathematical Soc.
ISBN: 0821848895
Category : Mathematics
Languages : en
Pages : 334

Book Description
Both fractal geometry and dynamical systems have a long history of development and have provided fertile ground for many great mathematicians and much deep and important mathematics. These two areas interact with each other and with the theory of chaos in a fundamental way: many dynamical systems (even some very simple ones) produce fractal sets, which are in turn a source of irregular 'chaotic' motions in the system. This book is an introduction to these two fields, with an emphasis on the relationship between them. The first half of the book introduces some of the key ideas in fractal geometry and dimension theory - Cantor sets, Hausdorff dimension, box dimension - using dynamical notions whenever possible, particularly one-dimensional Markov maps and symbolic dynamics. Various techniques for computing Hausdorff dimension are shown, leading to a discussion of Bernoulli and Markov measures and of the relationship between dimension, entropy, and Lyapunov exponents. In the second half of the book some examples of dynamical systems are considered and various phenomena of chaotic behaviour are discussed, including bifurcations, hyperbolicity, attractors, horseshoes, and intermittent and persistent chaos. These phenomena are naturally revealed in the course of our study of two real models from science - the FitzHugh - Nagumo model and the Lorenz system of differential equations. This book is accessible to undergraduate students and requires only standard knowledge in calculus, linear algebra, and differential equations. Elements of point set topology and measure theory are introduced as needed. This book is a result of the MASS course in analysis at Penn State University in the fall semester of 2008.

Lectures on Fractal Geometry

Lectures on Fractal Geometry PDF Author: Martina Zaehle
Publisher: World Scientific Publishing Company
ISBN: 9789811283338
Category : Mathematics
Languages : en
Pages : 0

Book Description
This book is based on a series of lectures at the Mathematics Department of the University of Jena, developed in the period from 1995 up to 2015. It is completed by additional material and extensions of some basic results from the literature to more general metric spaces.This book provides a clear introduction to classical fields of fractal geometry, which provide some background for modern topics of research and applications. Some basic knowledge on general measure theory and on topological notions in metric spaces is presumed.

Fractal Geometry and Analysis

Fractal Geometry and Analysis PDF Author: Jacques Bélair
Publisher: Springer Science & Business Media
ISBN: 9401579318
Category : Mathematics
Languages : en
Pages : 485

Book Description
This ASI- which was also the 28th session of the Seminaire de mathematiques superieures of the Universite de Montreal - was devoted to Fractal Geometry and Analysis. The present volume is the fruit of the work of this Advanced Study Institute. We were fortunate to have with us Prof. Benoit Mandelbrot - the creator of numerous concepts in Fractal Geometry - who gave a series of lectures on multifractals, iteration of analytic functions, and various kinds of fractal stochastic processes. Different foundational contributions for Fractal Geometry like measure theory, dy namical systems, iteration theory, branching processes are recognized. The geometry of fractal sets and the analytical tools used to investigate them provide a unifying theme of this book. The main topics that are covered are then as follows. Dimension Theory. Many definitions of fractional dimension have been proposed, all of which coincide on "regular" objects, but often take different values for a given fractal set. There is ample discussion on piecewise estimates yielding actual values for the most common dimensions (Hausdorff, box-counting and packing dimensions). The dimension theory is mainly discussed by Mendes-France, Bedford, Falconer, Tricot and Rata. Construction of fractal sets. Scale in variance is a fundamental property of fractal sets.

Fractal Geometry

Fractal Geometry PDF Author: Kenneth Falconer
Publisher: John Wiley & Sons
ISBN: 0470871350
Category : Mathematics
Languages : en
Pages : 367

Book Description
Since its original publication in 1990, Kenneth Falconer's Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. It introduces the general mathematical theory and applications of fractals in a way that is accessible to students from a wide range of disciplines. This new edition has been extensively revised and updated. It features much new material, many additional exercises, notes and references, and an extended bibliography that reflects the development of the subject since the first edition. * Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals. * Each topic is carefully explained and illustrated by examples and figures. * Includes all necessary mathematical background material. * Includes notes and references to enable the reader to pursue individual topics. * Features a wide selection of exercises, enabling the reader to develop their understanding of the theory. * Supported by a Web site featuring solutions to exercises, and additional material for students and lecturers. Fractal Geometry: Mathematical Foundations and Applications is aimed at undergraduate and graduate students studying courses in fractal geometry. The book also provides an excellent source of reference for researchers who encounter fractals in mathematics, physics, engineering, and the applied sciences. Also by Kenneth Falconer and available from Wiley: Techniques in Fractal Geometry ISBN 0-471-95724-0

Computers, Rigidity, and Moduli

Computers, Rigidity, and Moduli PDF Author: Shmuel Weinberger
Publisher: Princeton University Press
ISBN: 9780691118895
Category : Computers
Languages : en
Pages : 204

Book Description
This book is the first to present a new area of mathematical research that combines topology, geometry, and logic. Shmuel Weinberger seeks to explain and illustrate the implications of the general principle, first emphasized by Alex Nabutovsky, that logical complexity engenders geometric complexity. He provides applications to the problem of closed geodesics, the theory of submanifolds, and the structure of the moduli space of isometry classes of Riemannian metrics with curvature bounds on a given manifold. Ultimately, geometric complexity of a moduli space forces functions defined on that space to have many critical points, and new results about the existence of extrema or equilibria follow. The main sort of algorithmic problem that arises is recognition: is the presented object equivalent to some standard one? If it is difficult to determine whether the problem is solvable, then the original object has doppelgängers--that is, other objects that are extremely difficult to distinguish from it. Many new questions emerge about the algorithmic nature of known geometric theorems, about "dichotomy problems," and about the metric entropy of moduli space. Weinberger studies them using tools from group theory, computability, differential geometry, and topology, all of which he explains before use. Since several examples are worked out, the overarching principles are set in a clear relief that goes beyond the details of any one problem.

Lectures on Probability Theory, Dynamical Systems and Fractal Geometry

Lectures on Probability Theory, Dynamical Systems and Fractal Geometry PDF Author: Manfred Denker
Publisher:
ISBN:
Category :
Languages : en
Pages : 41

Book Description


Ergodic Theory and Fractal Geometry

Ergodic Theory and Fractal Geometry PDF Author: Harry Furstenberg
Publisher:
ISBN: 9781470418540
Category : Ergodic theory
Languages : en
Pages : 69

Book Description
"Notes based on a series of lectures delivered at Kent State University in 2011"--Preface.

Fractals in Biology and Medicine

Fractals in Biology and Medicine PDF Author: Theo F. Nonnenmacher
Publisher: Birkhäuser
ISBN: 3034885016
Category : Science
Languages : en
Pages : 401

Book Description
"Fractals in Biology and Medicine" explores the potential of fractal geometry for describing and understanding biological organisms, their development and growth as well as their structural design and functional properties. It extends these notions to assess changes associated with disease in the hope to contribute to the understanding of pathogenetic processes in medicine. The book is the first comprehensive presentation of the importance of the new concept of fractal geometry for biological and medical sciences. It collates in a logical sequence extended papers based on invited lectures and free communications presented at a symposium in Ascona, Switzerland, attended by leading scientists in this field, among them the originator of fractal geometry, Benoit Mandelbrot. "Fractals in Biology and Medicine" begins by asking how the theoretical construct of fractal geometry can be applied to biomedical sciences and then addresses the role of fractals in the design and morphogenesis of biological organisms as well as in molecular and cell biology. The consideration of fractal structure in understanding metabolic functions and pathological changes is a particularly promising avenue for future research.

Techniques in Fractal Geometry

Techniques in Fractal Geometry PDF Author: Kenneth Falconer
Publisher: Wiley
ISBN: 9780471957249
Category : Mathematics
Languages : en
Pages : 0

Book Description
Following on from the success of Fractal Geometry: Mathematical Foundations and Applications, this new sequel presents a variety of techniques in current use for studying the mathematics of fractals. Much of the material presented in this book has come to the fore in recent years. This includes methods for studying dimensions and other parameters of fractal sets and measures, as well as more sophisticated techniques such as thermodynamic formalism and tangent measures. In addition to general theory, many examples and applications are described, in areas such as differential equations and harmonic analysis. This book is mathematically precise, but aims to give an intuitive feel for the subject, with underlying concepts described in a clear and accessible manner. The reader is assumed to be familiar with material from Fractal Geometry, but the main ideas and notation are reviewed in the first two chapters. Each chapter ends with brief notes on the development and current state of the subject. Exercises are included to reinforce the concepts. The author's clear style and up-to-date coverage of the subject make this book essential reading for all those who with to develop their understanding of fractal geometry.