Author: Steven H. Simon
Publisher: Oxford University Press
ISBN: 0199680760
Category : Science
Languages : en
Pages : 308
Book Description
This is a first undergraduate textbook in Solid State Physics or Condensed Matter Physics. While most textbooks on the subject are extremely dry, this book is written to be much more exciting, inspiring, and entertaining.
The Oxford Solid State Basics
Lectures on Non-equilibrium Theory of Condensed Matter
Author: Ladislaus Alexander BÂ nyai
Publisher: World Scientific
ISBN: 9812567496
Category : Science
Languages : en
Pages : 247
Book Description
This book discusses in depth many of the key problems in non-equilibrium physics. The origin of macroscopic irreversible behavior receives particular attention and is illustrated in the framework of solvable models. An updated discussion on the linear response focuses on the correct electrodynamic aspects, which are essential for example, in the proof of the Nyquist theorem. The material covers the scaling relationship between different levels of description (kinetic to hydrodynamic) as well as spontaneous symmetry breaking in real time in terms of nonlinear dynamics (attractors), illustrated using the example of Bose-Einstein condensation. The presentation also includes the latest developments ? quantum kinetics ? related to modern ultrafast spectroscopy, where transition from reversible to irreversible behavior occurs.
Publisher: World Scientific
ISBN: 9812567496
Category : Science
Languages : en
Pages : 247
Book Description
This book discusses in depth many of the key problems in non-equilibrium physics. The origin of macroscopic irreversible behavior receives particular attention and is illustrated in the framework of solvable models. An updated discussion on the linear response focuses on the correct electrodynamic aspects, which are essential for example, in the proof of the Nyquist theorem. The material covers the scaling relationship between different levels of description (kinetic to hydrodynamic) as well as spontaneous symmetry breaking in real time in terms of nonlinear dynamics (attractors), illustrated using the example of Bose-Einstein condensation. The presentation also includes the latest developments ? quantum kinetics ? related to modern ultrafast spectroscopy, where transition from reversible to irreversible behavior occurs.
Lecture Notes on Field Theory in Condensed Matter Physics
Author: Christopher Mudry
Publisher: World Scientific Publishing Company
ISBN: 9789814449106
Category : Science
Languages : en
Pages : 0
Book Description
The aim of this book is to introduce a graduate student to selected concepts in condensed matter physics for which the language of field theory is ideally suited. The examples considered in this book are those of superfluidity for weakly interacting bosons, collinear magnetism, and superconductivity. Quantum phase transitions are also treated in the context of quantum dissipative junctions and interacting fermions constrained to one-dimensional position space. The style of presentation is sufficiently detailed and comprehensive that it only presumes familiarity with undergraduate physics.
Publisher: World Scientific Publishing Company
ISBN: 9789814449106
Category : Science
Languages : en
Pages : 0
Book Description
The aim of this book is to introduce a graduate student to selected concepts in condensed matter physics for which the language of field theory is ideally suited. The examples considered in this book are those of superfluidity for weakly interacting bosons, collinear magnetism, and superconductivity. Quantum phase transitions are also treated in the context of quantum dissipative junctions and interacting fermions constrained to one-dimensional position space. The style of presentation is sufficiently detailed and comprehensive that it only presumes familiarity with undergraduate physics.
Lecture Notes on Electron Correlation and Magnetism
Author: Patrik Fazekas
Publisher: World Scientific
ISBN: 9810224745
Category : Science
Languages : en
Pages : 794
Book Description
Readership: Graduate students and researchers in condensed matter physics.
Publisher: World Scientific
ISBN: 9810224745
Category : Science
Languages : en
Pages : 794
Book Description
Readership: Graduate students and researchers in condensed matter physics.
Protein Physics
Author: Alexei V. Finkelstein
Publisher: Elsevier
ISBN: 0081012365
Category : Science
Languages : en
Pages : 530
Book Description
Protein Physics: A Course of Lectures covers the most general problems of protein structure, folding and function. It describes key experimental facts and introduces concepts and theories, dealing with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states. The book systematically summarizes and presents the results of several decades of worldwide fundamental research on protein physics, structure, and folding, describing many physical models that help readers make estimates and predictions of physical processes that occur in proteins. New to this revised edition is the inclusion of novel information on amyloid aggregation, natively disordered proteins, protein folding in vivo, protein motors, misfolding, chameleon proteins, advances in protein engineering & design, and advances in the modeling of protein folding. Further, the book provides problems with solutions, many new and updated references, and physical and mathematical appendices. In addition, new figures (including stereo drawings, with a special appendix showing how to use them) are added, making this an ideal resource for graduate and advanced undergraduate students and researchers in academia in the fields of biophysics, physics, biochemistry, biologists, biotechnology, and chemistry. - Fully revised and expanded new edition based on the latest research developments in protein physics - Written by the world's top expert in the field - Deals with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states - Summarizes, in a systematic form, the results of several decades of worldwide fundamental research on protein physics and their structure and folding - Examines experimental data on protein structure in the post-genome era
Publisher: Elsevier
ISBN: 0081012365
Category : Science
Languages : en
Pages : 530
Book Description
Protein Physics: A Course of Lectures covers the most general problems of protein structure, folding and function. It describes key experimental facts and introduces concepts and theories, dealing with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states. The book systematically summarizes and presents the results of several decades of worldwide fundamental research on protein physics, structure, and folding, describing many physical models that help readers make estimates and predictions of physical processes that occur in proteins. New to this revised edition is the inclusion of novel information on amyloid aggregation, natively disordered proteins, protein folding in vivo, protein motors, misfolding, chameleon proteins, advances in protein engineering & design, and advances in the modeling of protein folding. Further, the book provides problems with solutions, many new and updated references, and physical and mathematical appendices. In addition, new figures (including stereo drawings, with a special appendix showing how to use them) are added, making this an ideal resource for graduate and advanced undergraduate students and researchers in academia in the fields of biophysics, physics, biochemistry, biologists, biotechnology, and chemistry. - Fully revised and expanded new edition based on the latest research developments in protein physics - Written by the world's top expert in the field - Deals with fibrous, membrane, and water-soluble globular proteins, in both their native and denatured states - Summarizes, in a systematic form, the results of several decades of worldwide fundamental research on protein physics and their structure and folding - Examines experimental data on protein structure in the post-genome era
Solid State Physics
Author: Philip Hofmann
Publisher: John Wiley & Sons
ISBN: 3527682031
Category : Science
Languages : en
Pages : 264
Book Description
A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t follow all the mathematical detail. The revised edition has been carefully updated to present an up-to-date account of the essential topics and recent developments in this exciting field of physics. The coverage now includes ground-breaking materials with high relevance for applications in communication and energy, like graphene and topological insulators, as well as transparent conductors. The text assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions free to lecturers from the Wiley-VCH website. The author's webpage provides Online Notes on x-ray scattering, elastic constants, the quantum Hall effect, tight binding model, atomic magnetism, and topological insulators. This new edition includes the following updates and new features: * Expanded coverage of mechanical properties of solids, including an improved discussion of the yield stress * Crystal structure, mechanical properties, and band structure of graphene * The coverage of electronic properties of metals is expanded by a section on the quantum hall effect including exercises. New topics include the tight-binding model and an expanded discussion on Bloch waves. * With respect to semiconductors, the discussion of solar cells has been extended and improved. * Revised coverage of magnetism, with additional material on atomic magnetism * More extensive treatment of finite solids and nanostructures, now including topological insulators * Recommendations for further reading have been updated and increased. * New exercises on Hall mobility, light penetrating metals, band structure
Publisher: John Wiley & Sons
ISBN: 3527682031
Category : Science
Languages : en
Pages : 264
Book Description
A must-have textbook for any undergraduate studying solid state physics. This successful brief course in solid state physics is now in its second edition. The clear and concise introduction not only describes all the basic phenomena and concepts, but also such advanced issues as magnetism and superconductivity. Each section starts with a gentle introduction, covering basic principles, progressing to a more advanced level in order to present a comprehensive overview of the subject. The book is providing qualitative discussions that help undergraduates understand concepts even if they can?t follow all the mathematical detail. The revised edition has been carefully updated to present an up-to-date account of the essential topics and recent developments in this exciting field of physics. The coverage now includes ground-breaking materials with high relevance for applications in communication and energy, like graphene and topological insulators, as well as transparent conductors. The text assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions free to lecturers from the Wiley-VCH website. The author's webpage provides Online Notes on x-ray scattering, elastic constants, the quantum Hall effect, tight binding model, atomic magnetism, and topological insulators. This new edition includes the following updates and new features: * Expanded coverage of mechanical properties of solids, including an improved discussion of the yield stress * Crystal structure, mechanical properties, and band structure of graphene * The coverage of electronic properties of metals is expanded by a section on the quantum hall effect including exercises. New topics include the tight-binding model and an expanded discussion on Bloch waves. * With respect to semiconductors, the discussion of solar cells has been extended and improved. * Revised coverage of magnetism, with additional material on atomic magnetism * More extensive treatment of finite solids and nanostructures, now including topological insulators * Recommendations for further reading have been updated and increased. * New exercises on Hall mobility, light penetrating metals, band structure
Basic Notions Of Condensed Matter Physics
Author: Philip W. Anderson
Publisher: CRC Press
ISBN: 0429973748
Category : Science
Languages : en
Pages : 413
Book Description
First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.
Publisher: CRC Press
ISBN: 0429973748
Category : Science
Languages : en
Pages : 413
Book Description
First Published in 2018. Routledge is an imprint of Taylor & Francis, an Informa company.
Lectures On Computation
Author: Richard P. Feynman
Publisher: Addison-Wesley Longman
ISBN:
Category : Computers
Languages : en
Pages : 328
Book Description
Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b
Publisher: Addison-Wesley Longman
ISBN:
Category : Computers
Languages : en
Pages : 328
Book Description
Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b
Lectures on Field Theory and Topology
Author: Daniel S. Freed
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202
Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Publisher: American Mathematical Soc.
ISBN: 1470452065
Category : Mathematics
Languages : en
Pages : 202
Book Description
These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.
Spin Glasses and Complexity
Author: Daniel L. Stein
Publisher: Princeton University Press
ISBN: 1400845637
Category : Science
Languages : en
Pages : 336
Book Description
Spin glasses are disordered magnetic systems that have led to the development of mathematical tools with an array of real-world applications, from airline scheduling to neural networks. Spin Glasses and Complexity offers the most concise, engaging, and accessible introduction to the subject, fully explaining what spin glasses are, why they are important, and how they are opening up new ways of thinking about complexity. This one-of-a-kind guide to spin glasses begins by explaining the fundamentals of order and symmetry in condensed matter physics and how spin glasses fit into--and modify--this framework. It then explores how spin-glass concepts and ideas have found applications in areas as diverse as computational complexity, biological and artificial neural networks, protein folding, immune response maturation, combinatorial optimization, and social network modeling. Providing an essential overview of the history, science, and growing significance of this exciting field, Spin Glasses and Complexity also features a forward-looking discussion of what spin glasses may teach us in the future about complex systems. This is a must-have book for students and practitioners in the natural and social sciences, with new material even for the experts.
Publisher: Princeton University Press
ISBN: 1400845637
Category : Science
Languages : en
Pages : 336
Book Description
Spin glasses are disordered magnetic systems that have led to the development of mathematical tools with an array of real-world applications, from airline scheduling to neural networks. Spin Glasses and Complexity offers the most concise, engaging, and accessible introduction to the subject, fully explaining what spin glasses are, why they are important, and how they are opening up new ways of thinking about complexity. This one-of-a-kind guide to spin glasses begins by explaining the fundamentals of order and symmetry in condensed matter physics and how spin glasses fit into--and modify--this framework. It then explores how spin-glass concepts and ideas have found applications in areas as diverse as computational complexity, biological and artificial neural networks, protein folding, immune response maturation, combinatorial optimization, and social network modeling. Providing an essential overview of the history, science, and growing significance of this exciting field, Spin Glasses and Complexity also features a forward-looking discussion of what spin glasses may teach us in the future about complex systems. This is a must-have book for students and practitioners in the natural and social sciences, with new material even for the experts.