Author: Michael J. Wichura
Publisher:
ISBN:
Category : Analysis of variance
Languages : en
Pages : 260
Book Description
Lecture Notes on the Coordinate-free Approach to Linear Models
Author: Michael J. Wichura
Publisher:
ISBN:
Category : Analysis of variance
Languages : en
Pages : 260
Book Description
Publisher:
ISBN:
Category : Analysis of variance
Languages : en
Pages : 260
Book Description
The Coordinate-Free Approach to Linear Models
Author: Michael J. Wichura
Publisher: Cambridge University Press
ISBN: 1139461044
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models in statistics. The book discusses the intuition behind and optimal properties of various methods of estimating and testing hypotheses about unknown parameters in the models. Topics covered range from linear algebra, such as inner product spaces, orthogonal projections, book orthogonal spaces, Tjur experimental designs, basic distribution theory, the geometric version of the Gauss-Markov theorem, optimal and non-optimal properties of Gauss-Markov, Bayes, and shrinkage estimators under assumption of normality, the optimal properties of F-test, and the analysis of covariance and missing observations.
Publisher: Cambridge University Press
ISBN: 1139461044
Category : Mathematics
Languages : en
Pages : 188
Book Description
This book is about the coordinate-free, or geometric, approach to the theory of linear models; more precisely, Model I ANOVA and linear regression models with non-random predictors in a finite-dimensional setting. This approach is more insightful, more elegant, more direct, and simpler than the more common matrix approach to linear regression, analysis of variance, and analysis of covariance models in statistics. The book discusses the intuition behind and optimal properties of various methods of estimating and testing hypotheses about unknown parameters in the models. Topics covered range from linear algebra, such as inner product spaces, orthogonal projections, book orthogonal spaces, Tjur experimental designs, basic distribution theory, the geometric version of the Gauss-Markov theorem, optimal and non-optimal properties of Gauss-Markov, Bayes, and shrinkage estimators under assumption of normality, the optimal properties of F-test, and the analysis of covariance and missing observations.
The Coordinate-Free Approach to Gauss-Markov Estimation
Author: H. Drygas
Publisher: Springer Science & Business Media
ISBN: 3642651488
Category : Business & Economics
Languages : en
Pages : 125
Book Description
These notes originate from a couple of lectures which were given in the Econometric Workshop of the Center for Operations Research and Econometrics (CORE) at the Catholic University of Louvain. The participants of the seminars were recommended to read the first four chapters of Seber's book [40], but the exposition of the material went beyond Seber's exposition, if it seemed necessary. Coordinate-free methods are not new in Gauss-Markov estimation, besides Seber the work of Kolmogorov [11], SCheffe [36], Kruskal [21], [22] and Malinvaud [25], [26] should be mentioned. Malinvaud's approach however is a little different from that of the other authors, because his optimality criterion is based on the ellipsoid of c- centration. This criterion is however equivalent to the usual c- cept of minimal covariance-matrix and therefore the result must be the same in both cases. While the usual theory gives no indication how small the covariance-matrix can be made before the optimal es timator is computed, Malinvaud can show how small the ellipsoid of concentration can be made: it is at most equal to the intersection of the ellipssoid of concentration of the observed random vector and the linear space in which the (unknown) expectation value of the observed random vector is lying. This exposition is based on the observation, that in regression ~nalysis and related fields two conclusions are or should preferably be applied repeatedly.
Publisher: Springer Science & Business Media
ISBN: 3642651488
Category : Business & Economics
Languages : en
Pages : 125
Book Description
These notes originate from a couple of lectures which were given in the Econometric Workshop of the Center for Operations Research and Econometrics (CORE) at the Catholic University of Louvain. The participants of the seminars were recommended to read the first four chapters of Seber's book [40], but the exposition of the material went beyond Seber's exposition, if it seemed necessary. Coordinate-free methods are not new in Gauss-Markov estimation, besides Seber the work of Kolmogorov [11], SCheffe [36], Kruskal [21], [22] and Malinvaud [25], [26] should be mentioned. Malinvaud's approach however is a little different from that of the other authors, because his optimality criterion is based on the ellipsoid of c- centration. This criterion is however equivalent to the usual c- cept of minimal covariance-matrix and therefore the result must be the same in both cases. While the usual theory gives no indication how small the covariance-matrix can be made before the optimal es timator is computed, Malinvaud can show how small the ellipsoid of concentration can be made: it is at most equal to the intersection of the ellipssoid of concentration of the observed random vector and the linear space in which the (unknown) expectation value of the observed random vector is lying. This exposition is based on the observation, that in regression ~nalysis and related fields two conclusions are or should preferably be applied repeatedly.
Bilinear Regression Analysis
Author: Dietrich von Rosen
Publisher: Springer
ISBN: 3319787845
Category : Mathematics
Languages : en
Pages : 473
Book Description
This book expands on the classical statistical multivariate analysis theory by focusing on bilinear regression models, a class of models comprising the classical growth curve model and its extensions. In order to analyze the bilinear regression models in an interpretable way, concepts from linear models are extended and applied to tensor spaces. Further, the book considers decompositions of tensor products into natural subspaces, and addresses maximum likelihood estimation, residual analysis, influential observation analysis and testing hypotheses, where properties of estimators such as moments, asymptotic distributions or approximations of distributions are also studied. Throughout the text, examples and several analyzed data sets illustrate the different approaches, and fresh insights into classical multivariate analysis are provided. This monograph is of interest to researchers and Ph.D. students in mathematical statistics, signal processing and other fields where statistical multivariate analysis is utilized. It can also be used as a text for second graduate-level courses on multivariate analysis.
Publisher: Springer
ISBN: 3319787845
Category : Mathematics
Languages : en
Pages : 473
Book Description
This book expands on the classical statistical multivariate analysis theory by focusing on bilinear regression models, a class of models comprising the classical growth curve model and its extensions. In order to analyze the bilinear regression models in an interpretable way, concepts from linear models are extended and applied to tensor spaces. Further, the book considers decompositions of tensor products into natural subspaces, and addresses maximum likelihood estimation, residual analysis, influential observation analysis and testing hypotheses, where properties of estimators such as moments, asymptotic distributions or approximations of distributions are also studied. Throughout the text, examples and several analyzed data sets illustrate the different approaches, and fresh insights into classical multivariate analysis are provided. This monograph is of interest to researchers and Ph.D. students in mathematical statistics, signal processing and other fields where statistical multivariate analysis is utilized. It can also be used as a text for second graduate-level courses on multivariate analysis.
Linear Statistical Inference
Author: T. Calinski
Publisher: Springer Science & Business Media
ISBN: 146157353X
Category : Mathematics
Languages : en
Pages : 326
Book Description
An International Statistical Conference on Linear Inference was held in Poznan, Poland, on June 4-8, 1984. The conference was organized under the auspices of the Polish Section of the Bernoulli Society, the Committee of Mathematical Sciences and the Mathematical Institute of the ,Polish Academy of Sciences. The purpose of the meeting was to bring together scientists from vari ous countries working in the diverse areas of statistical sciences but showing great interest in the advances of research on linear inference taken in its broad sense. Thus, the conference programme included ses sions on Gauss-Markov models, robustness, variance components~ experi mental design, multiple comparisons, multivariate models, computational aspects and on some special topics. 38 papers were read within the vari ous sessions and 5 were presented as posters. At the end of the confer ence a lively general discussion session was held. The conference gathered more than ninety participants from 16 countries, representing both parts of Europe, North America and Asia. Judging from opinions expressed by many participants, the conference was quite suc cessful, well contributing to the dissemination of knowledge and the stimulation of research in different areas linked with statistical li near inference. If the conference was really a success, it was due to all its participants who in various ways were devoting their time and efforts to make the conference fruitful and enjoyable.
Publisher: Springer Science & Business Media
ISBN: 146157353X
Category : Mathematics
Languages : en
Pages : 326
Book Description
An International Statistical Conference on Linear Inference was held in Poznan, Poland, on June 4-8, 1984. The conference was organized under the auspices of the Polish Section of the Bernoulli Society, the Committee of Mathematical Sciences and the Mathematical Institute of the ,Polish Academy of Sciences. The purpose of the meeting was to bring together scientists from vari ous countries working in the diverse areas of statistical sciences but showing great interest in the advances of research on linear inference taken in its broad sense. Thus, the conference programme included ses sions on Gauss-Markov models, robustness, variance components~ experi mental design, multiple comparisons, multivariate models, computational aspects and on some special topics. 38 papers were read within the vari ous sessions and 5 were presented as posters. At the end of the confer ence a lively general discussion session was held. The conference gathered more than ninety participants from 16 countries, representing both parts of Europe, North America and Asia. Judging from opinions expressed by many participants, the conference was quite suc cessful, well contributing to the dissemination of knowledge and the stimulation of research in different areas linked with statistical li near inference. If the conference was really a success, it was due to all its participants who in various ways were devoting their time and efforts to make the conference fruitful and enjoyable.
Linear Models in Statistics
Author: Alvin C. Rencher
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
Publisher: John Wiley & Sons
ISBN: 0470192607
Category : Mathematics
Languages : en
Pages : 690
Book Description
The essential introduction to the theory and application of linear models—now in a valuable new edition Since most advanced statistical tools are generalizations of the linear model, it is neces-sary to first master the linear model in order to move forward to more advanced concepts. The linear model remains the main tool of the applied statistician and is central to the training of any statistician regardless of whether the focus is applied or theoretical. This completely revised and updated new edition successfully develops the basic theory of linear models for regression, analysis of variance, analysis of covariance, and linear mixed models. Recent advances in the methodology related to linear mixed models, generalized linear models, and the Bayesian linear model are also addressed. Linear Models in Statistics, Second Edition includes full coverage of advanced topics, such as mixed and generalized linear models, Bayesian linear models, two-way models with empty cells, geometry of least squares, vector-matrix calculus, simultaneous inference, and logistic and nonlinear regression. Algebraic, geometrical, frequentist, and Bayesian approaches to both the inference of linear models and the analysis of variance are also illustrated. Through the expansion of relevant material and the inclusion of the latest technological developments in the field, this book provides readers with the theoretical foundation to correctly interpret computer software output as well as effectively use, customize, and understand linear models. This modern Second Edition features: New chapters on Bayesian linear models as well as random and mixed linear models Expanded discussion of two-way models with empty cells Additional sections on the geometry of least squares Updated coverage of simultaneous inference The book is complemented with easy-to-read proofs, real data sets, and an extensive bibliography. A thorough review of the requisite matrix algebra has been addedfor transitional purposes, and numerous theoretical and applied problems have been incorporated with selected answers provided at the end of the book. A related Web site includes additional data sets and SAS® code for all numerical examples. Linear Model in Statistics, Second Edition is a must-have book for courses in statistics, biostatistics, and mathematics at the upper-undergraduate and graduate levels. It is also an invaluable reference for researchers who need to gain a better understanding of regression and analysis of variance.
A First Course in Linear Model Theory
Author: Nalini Ravishanker
Publisher: CRC Press
ISBN: 1000228630
Category : Mathematics
Languages : en
Pages : 490
Book Description
This innovative, intermediate-level statistics text fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the author's introduces students to the mathematical and statistical concepts and tools that form a foundation
Publisher: CRC Press
ISBN: 1000228630
Category : Mathematics
Languages : en
Pages : 490
Book Description
This innovative, intermediate-level statistics text fills an important gap by presenting the theory of linear statistical models at a level appropriate for senior undergraduate or first-year graduate students. With an innovative approach, the author's introduces students to the mathematical and statistical concepts and tools that form a foundation
Multivariate Calculation
Author: R.H. Farrell
Publisher: Springer Science & Business Media
ISBN: 1461385288
Category : Mathematics
Languages : en
Pages : 392
Book Description
Like some of my colleagues, in my earlier years I found the multivariate Jacobian calculations horrible and unbelievable. As I listened and read during the years 1956 to 1974 I continually saw alternatives to the Jacobian and variable change method of computing probability density functions. Further, it was made clear by the work of A. T. James that computation of the density functions of the sets of roots of determinental equations required a method other than Jacobian calculations and that the densities could be calculated using differential forms on manifolds. It had become clear from the work ofC S. Herz and A. T. James that the expression of the noncentral multivariate density functions required integration with respect to Haar measures on locally compact groups. Material on manifolds and locally compact groups had not yet reached the pages of multivariate books of the time and also much material about multivariate computations existed only in the journal literature or in unpublished sets oflecture notes. In spirit, being more a mathematician than a statistician, the urge to write a book giving an integrated treatment of these topics found expression in 1974-1975 when I took a one year medical leave of absence from Cornell University. During this period I wrote Techniques of Multivariate Calculation. Writing a coherent treatment of the various methods made obvious re quired background material.
Publisher: Springer Science & Business Media
ISBN: 1461385288
Category : Mathematics
Languages : en
Pages : 392
Book Description
Like some of my colleagues, in my earlier years I found the multivariate Jacobian calculations horrible and unbelievable. As I listened and read during the years 1956 to 1974 I continually saw alternatives to the Jacobian and variable change method of computing probability density functions. Further, it was made clear by the work of A. T. James that computation of the density functions of the sets of roots of determinental equations required a method other than Jacobian calculations and that the densities could be calculated using differential forms on manifolds. It had become clear from the work ofC S. Herz and A. T. James that the expression of the noncentral multivariate density functions required integration with respect to Haar measures on locally compact groups. Material on manifolds and locally compact groups had not yet reached the pages of multivariate books of the time and also much material about multivariate computations existed only in the journal literature or in unpublished sets oflecture notes. In spirit, being more a mathematician than a statistician, the urge to write a book giving an integrated treatment of these topics found expression in 1974-1975 when I took a one year medical leave of absence from Cornell University. During this period I wrote Techniques of Multivariate Calculation. Writing a coherent treatment of the various methods made obvious re quired background material.
Linear Models: An Integrated Approach
Author: S Rao Jammalamadaka
Publisher: World Scientific
ISBN: 9814491268
Category : Mathematics
Languages : en
Pages : 646
Book Description
Linear Models: An Integrated Approach aims to provide a clear and deep understanding of the general linear model using simple statistical ideas. Elegant geometric arguments are also invoked as needed and a review of vector spaces and matrices is provided to make the treatment self-contained. Complex, matrix-algebraic methods, such as those used in the rank-deficient case, are replaced by statistical proofs that are more transparent and that show the parallels with the simple linear model.This book has the following special features:
Publisher: World Scientific
ISBN: 9814491268
Category : Mathematics
Languages : en
Pages : 646
Book Description
Linear Models: An Integrated Approach aims to provide a clear and deep understanding of the general linear model using simple statistical ideas. Elegant geometric arguments are also invoked as needed and a review of vector spaces and matrices is provided to make the treatment self-contained. Complex, matrix-algebraic methods, such as those used in the rank-deficient case, are replaced by statistical proofs that are more transparent and that show the parallels with the simple linear model.This book has the following special features:
Proceedings of the International Conference on Linear Statistical Inference LINSTAT ’93
Author: Tadeusz Calinski
Publisher: Springer Science & Business Media
ISBN: 9401110042
Category : Mathematics
Languages : en
Pages : 309
Book Description
The International Conference on Linear Statistical Inference LINSTAT'93 was held in Poznan, Poland, from May 31 to June 4, 1993. The purpose of the confer ence was to enable scientists, from various countries, engaged in the diverse areas of statistical sciences and practice to meet together and exchange views and re sults related to the current research on linear statistical inference in its broadest sense. Thus, the conference programme included sessions on estimation, prediction and testing in linear models, on robustness of some relevant statistical methods, on estimation of variance components appearing in linear models, on certain gen eralizations to nonlinear models, on design and analysis of experiments, including optimality and comparison of linear experiments, and on some other topics related to linear statistical inference. Within the various sessions 22 invited papers and 37 contributed papers were presented, 12 of them as posters. The conference gathered 94 participants from eighteen countries of Europe, North America and Asia. There were 53 participants from abroad and 41 from Poland. The conference was the second of this type, devoted to linear statistical inference. The first was held in Poznan in June, 4-8, 1984. Both belong to the series of confer ences on mathematical statistics and probability theory organized under the auspices of the Committee of Mathematics of the Polish Academy of Sciences, due to the ini tiative and efforts of its Mathematical Statistics Section. In the years 1973-1993 there were held in Poland nineteen such conferences, some of them international.
Publisher: Springer Science & Business Media
ISBN: 9401110042
Category : Mathematics
Languages : en
Pages : 309
Book Description
The International Conference on Linear Statistical Inference LINSTAT'93 was held in Poznan, Poland, from May 31 to June 4, 1993. The purpose of the confer ence was to enable scientists, from various countries, engaged in the diverse areas of statistical sciences and practice to meet together and exchange views and re sults related to the current research on linear statistical inference in its broadest sense. Thus, the conference programme included sessions on estimation, prediction and testing in linear models, on robustness of some relevant statistical methods, on estimation of variance components appearing in linear models, on certain gen eralizations to nonlinear models, on design and analysis of experiments, including optimality and comparison of linear experiments, and on some other topics related to linear statistical inference. Within the various sessions 22 invited papers and 37 contributed papers were presented, 12 of them as posters. The conference gathered 94 participants from eighteen countries of Europe, North America and Asia. There were 53 participants from abroad and 41 from Poland. The conference was the second of this type, devoted to linear statistical inference. The first was held in Poznan in June, 4-8, 1984. Both belong to the series of confer ences on mathematical statistics and probability theory organized under the auspices of the Committee of Mathematics of the Polish Academy of Sciences, due to the ini tiative and efforts of its Mathematical Statistics Section. In the years 1973-1993 there were held in Poland nineteen such conferences, some of them international.