Series Approximation Methods in Statistics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Series Approximation Methods in Statistics PDF full book. Access full book title Series Approximation Methods in Statistics by John E. Kolassa. Download full books in PDF and EPUB format.

Series Approximation Methods in Statistics

Series Approximation Methods in Statistics PDF Author: John E. Kolassa
Publisher: Springer Science & Business Media
ISBN: 1475742754
Category : Mathematics
Languages : en
Pages : 162

Book Description
This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted.

Series Approximation Methods in Statistics

Series Approximation Methods in Statistics PDF Author: John E. Kolassa
Publisher: Springer Science & Business Media
ISBN: 1475742754
Category : Mathematics
Languages : en
Pages : 162

Book Description
This book was originally compiled for a course I taught at the University of Rochester in the fall of 1991, and is intended to give advanced graduate students in statistics an introduction to Edgeworth and saddlepoint approximations, and related techniques. Many other authors have also written monographs on this subject, and so this work is narrowly focused on two areas not recently discussed in theoretical text books. These areas are, first, a rigorous consideration of Edgeworth and saddlepoint expansion limit theorems, and second, a survey of the more recent developments in the field. In presenting expansion limit theorems I have drawn heavily 011 notation of McCullagh (1987) and on the theorems presented by Feller (1971) on Edgeworth expansions. For saddlepoint notation and results I relied most heavily on the many papers of Daniels, and a review paper by Reid (1988). Throughout this book I have tried to maintain consistent notation and to present theorems in such a way as to make a few theoretical results useful in as many contexts as possible. This was not only in order to present as many results with as few proofs as possible, but more importantly to show the interconnections between the various facets of asymptotic theory. Special attention is paid to regularity conditions. The reasons they are needed and the parts they play in the proofs are both highlighted.

Wavelets and Statistics

Wavelets and Statistics PDF Author: Anestis Antoniadis
Publisher: Springer Science & Business Media
ISBN: 1461225442
Category : Mathematics
Languages : en
Pages : 407

Book Description
Despite its short history, wavelet theory has found applications in a remarkable diversity of disciplines: mathematics, physics, numerical analysis, signal processing, probability theory and statistics. The abundance of intriguing and useful features enjoyed by wavelet and wavelet packed transforms has led to their application to a wide range of statistical and signal processing problems. On November 16-18, 1994, a conference on Wavelets and Statistics was held at Villard de Lans, France, organized by the Institute IMAG-LMC, Grenoble, France. The meeting was the 15th in the series of the Rencontres Pranco-Belges des 8tatisticiens and was attended by 74 mathematicians from 12 different countries. Following tradition, both theoretical statistical results and practical contributions of this active field of statistical research were presented. The editors and the local organizers hope that this volume reflects the broad spectrum of the conference. as it includes 21 articles contributed by specialists in various areas in this field. The material compiled is fairly wide in scope and ranges from the development of new tools for non parametric curve estimation to applied problems, such as detection of transients in signal processing and image segmentation. The articles are arranged in alphabetical order by author rather than subject matter. However, to help the reader, a subjective classification of the articles is provided at the end of the book. Several articles of this volume are directly or indirectly concerned with several as pects of wavelet-based function estimation and signal denoising.

Lectures on Probability Theory and Statistics

Lectures on Probability Theory and Statistics PDF Author: Simon Tavaré
Publisher: Springer
ISBN: 3540398740
Category : Mathematics
Languages : en
Pages : 320

Book Description
This volume contains lectures given at the 31st Probability Summer School in Saint-Flour (July 8-25, 2001). Simon Tavaré’s lectures serve as an introduction to the coalescent, and to inference for ancestral processes in population genetics. The stochastic computation methods described include rejection methods, importance sampling, Markov chain Monte Carlo, and approximate Bayesian methods. Ofer Zeitouni’s course on "Random Walks in Random Environment" presents systematically the tools that have been introduced to study the model. A fairly complete description of available results in dimension 1 is given. For higher dimension, the basic techniques and a discussion of some of the available results are provided. The contribution also includes an updated annotated bibliography and suggestions for further reading. Olivier Catoni's course appears separately.

Lecture Notes on Medical Statistics

Lecture Notes on Medical Statistics PDF Author:
Publisher:
ISBN:
Category : Medical statistics
Languages : en
Pages : 0

Book Description


Deconvolution Problems in Nonparametric Statistics

Deconvolution Problems in Nonparametric Statistics PDF Author: Alexander Meister
Publisher: Springer Science & Business Media
ISBN: 3540875573
Category : Mathematics
Languages : en
Pages : 211

Book Description
Deconvolution problems occur in many ?elds of nonparametric statistics, for example, density estimation based on contaminated data, nonparametric - gression with errors-in-variables, image and signal deblurring. During the last two decades, those topics have received more and more attention. As appli- tions of deconvolution procedures concern many real-life problems in eco- metrics, biometrics, medical statistics, image reconstruction, one can realize an increasing number of applied statisticians who are interested in nonpa- metric deconvolution methods; on the other hand, some deep results from Fourier analysis, functional analysis, and probability theory are required to understand the construction of deconvolution techniques and their properties so that deconvolution is also particularly challenging for mathematicians. Thegeneraldeconvolutionprobleminstatisticscanbedescribedasfollows: Our goal is estimating a function f while any empirical access is restricted to some quantity h = f?G = f(x?y)dG(y), (1. 1) that is, the convolution of f and some probability distribution G. Therefore, f can be estimated from some observations only indirectly. The strategy is ˆ estimating h ?rst; this means producing an empirical version h of h and, then, ˆ applying a deconvolution procedure to h to estimate f. In the mathematical context, we have to invert the convolution operator with G where some reg- ˆ ularization is required to guarantee that h is contained in the invertibility ˆ domain of the convolution operator. The estimator h has to be chosen with respect to the speci?c statistical experiment.

Statistics in Ornithology

Statistics in Ornithology PDF Author: Byron Morgan
Publisher: Springer Science & Business Media
ISBN: 1461251389
Category : Medical
Languages : en
Pages : 428

Book Description
The genesis of this volume was in a one-day meeting arranged under the auspices of the Nathematical Ecology Group, jointly of the British Region of the Biometric Society and the British Ecological Society, and held in the Natural History Museum in London on the 4th May 1982. The object of the meeting was to bring together individuals from different dis ciplines but with a common interest in ornithology. In this volume we have tried to preserve the flavour of the meeting so that all but two of the papers read or pre sented as posters can be found here. The two papers that have not been included have since been published elsewhere: see Birkhead and Nettleship (1983) and Cav~ (1983). Further papers have been added to the volume from contributors who were unable to attend the London meeting, or were unable to present a paper there. All of the papers were refereed by ourselves. A volume which contains papers by both statisticians and non-statisticians is inevitably going to be variable with regard to the depth and range of statistical techniques used. Thus non-statisticians are likely to find some of the papers written by statisticians difficult at times, and conversely statisticians n2Y find that they would have treated some problems differently from non-statisticians. It is hoped, however, that this volun~ will increase awareness of the interests and problems (including solutions), in the general area of ornithology, and stimulate cross-fertilisation of ideas.

Practical Nonparametric and Semiparametric Bayesian Statistics

Practical Nonparametric and Semiparametric Bayesian Statistics PDF Author: Dipak D. Dey
Publisher: Springer Science & Business Media
ISBN: 1461217326
Category : Mathematics
Languages : en
Pages : 376

Book Description
A compilation of original articles by Bayesian experts, this volume presents perspectives on recent developments on nonparametric and semiparametric methods in Bayesian statistics. The articles discuss how to conceptualize and develop Bayesian models using rich classes of nonparametric and semiparametric methods, how to use modern computational tools to summarize inferences, and how to apply these methodologies through the analysis of case studies.

Lectures on Probability Theory and Statistics

Lectures on Probability Theory and Statistics PDF Author: Erwin Bolthausen
Publisher: Springer
ISBN: 3540479449
Category : Mathematics
Languages : en
Pages : 469

Book Description
This volume contains lectures given at the Saint-Flour Summer School of Probability Theory during the period 8th-24th July, 1999. We thank the authors for all the hard work they accomplished. Their lectures are a work of reference in their domain. The School brought together 85 participants, 31 of whom gave a lecture concerning their research work. At the end of this volume you will find the list of participants and their papers. Finally, to facilitate research concerning previous schools we give here the number of the volume of "Lecture Notes" where they can be found: Lecture Notes in Mathematics 1975: n ° 539- 1971: n ° 307- 1973: n ° 390- 1974: n ° 480- 1979: n ° 876- 1976: n ° 598- 1977: n ° 678- 1978: n ° 774- 1980: n ° 929- 1981: n ° 976- 1982: n ° 1097- 1983: n ° 1117- 1988: n ° 1427- 1984: n ° 1180- 1985-1986 et 1987: n ° 1362- 1989: n ° 1464- 1990: n ° 1527- 1991: n ° 1541- 1992: n ° 1581- 1993: n ° 1608- 1994: n ° 1648- 1995: n ° 1690- 1996: n ° 1665- 1997: n ° 1717- 1998: n ° 1738- Lecture Notes in Statistics 1971: n ° 307- Table of Contents Part I Erwin Bolthausen: Large Deviations and Interacting Random Walks 1 On the construction of the three-dimensional polymer measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Self-attracting random walks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 One-dimensional pinning-depinning transitions. . . . . . . . . . . 105 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Random Effect and Latent Variable Model Selection

Random Effect and Latent Variable Model Selection PDF Author: David Dunson
Publisher: Springer Science & Business Media
ISBN: 0387767215
Category : Mathematics
Languages : en
Pages : 174

Book Description
Random Effect and Latent Variable Model Selection In recent years, there has been a dramatic increase in the collection of multivariate and correlated data in a wide variety of ?elds. For example, it is now standard pr- tice to routinely collect many response variables on each individual in a study. The different variables may correspond to repeated measurements over time, to a battery of surrogates for one or more latent traits, or to multiple types of outcomes having an unknown dependence structure. Hierarchical models that incorporate subje- speci?c parameters are one of the most widely-used tools for analyzing multivariate and correlated data. Such subject-speci?c parameters are commonly referred to as random effects, latent variables or frailties. There are two modeling frameworks that have been particularly widely used as hierarchical generalizations of linear regression models. The ?rst is the linear mixed effects model (Laird and Ware , 1982) and the second is the structural equation model (Bollen , 1989). Linear mixed effects (LME) models extend linear regr- sion to incorporate two components, with the ?rst corresponding to ?xed effects describing the impact of predictors on the mean and the second to random effects characterizing the impact on the covariance. LMEs have also been increasingly used for function estimation. In implementing LME analyses, model selection problems are unavoidable. For example, there may be interest in comparing models with and without a predictor in the ?xed and/or random effects component.

Lectures on Probability Theory and Statistics

Lectures on Probability Theory and Statistics PDF Author: Wendelin Werner
Publisher: Springer Science & Business Media
ISBN: 9783540213161
Category :
Languages : en
Pages : 212

Book Description