Learning-dependent Processing of Natural Communication Sounds in Single Neurons and Neural Populations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Learning-dependent Processing of Natural Communication Sounds in Single Neurons and Neural Populations PDF full book. Access full book title Learning-dependent Processing of Natural Communication Sounds in Single Neurons and Neural Populations by James McClure Jeanne. Download full books in PDF and EPUB format.

Learning-dependent Processing of Natural Communication Sounds in Single Neurons and Neural Populations

Learning-dependent Processing of Natural Communication Sounds in Single Neurons and Neural Populations PDF Author: James McClure Jeanne
Publisher:
ISBN: 9781267169013
Category :
Languages : en
Pages : 108

Book Description
The ability to learn to recognize new sensory signals such as voices or faces is an important cognitive function in many species. This ability is thought to involve the plasticity of neural representations in high-level sensory cortical areas, but this plasticity is poorly understood. Using European starlings (a species of songbird) trained to recognize natural conspecific song segments, I investigated the emergence of neural representations for learned signals across two auditory forebrain regions : the caudolateral mesopallium (CLM) and the caudomedial mesopallium (CMM). In both CLM and CMM, neurons encoded more information about the motifs (short, stereotyped segments of song) that make up songs paired with reward during training than the motifs that make up novel songs. This shows that behavioral experience is an important modulator of neural encoding in the songbird auditory forebrain. In the natural world, individuals learn which signals convey relevant information for particular behaviors. However, it is unknown how this behavioral information influences neural encoding in the brain. I explored this by training starlings on a paired-motif recognition task where one motif was informative about the behavior required to obtain reward and the other motif was not informative. Following training, single neurons in CLM responded more strongly to informative motifs than to uninformative or novel motifs, whereas single neurons in CMM responded strongly to both informative and uninformative motifs. This suggests that encoding in CLM may serve to emphasize those signals that are particularly behaviorally relevant. Sensory encoding in cortical areas is distributed across many neurons. But how learning alters these neural population representations remains unexplored. To explore this question, I analyzed the correlated activity of simultaneously recorded neurons within CLM. When processing informative motifs, the correlations led to enhanced population discriminability, relative to the correlations when processing uninformative or novel motifs. Thus, the information that a sensory signal conveys about behavior modulates neural encoding in both single neurons and in neural populations. Collectively, these studies demonstrate that behavioral relevance substantially influences neural processing by both single neurons and larger populations in cortical brain regions.

Learning-dependent Processing of Natural Communication Sounds in Single Neurons and Neural Populations

Learning-dependent Processing of Natural Communication Sounds in Single Neurons and Neural Populations PDF Author: James McClure Jeanne
Publisher:
ISBN: 9781267169013
Category :
Languages : en
Pages : 108

Book Description
The ability to learn to recognize new sensory signals such as voices or faces is an important cognitive function in many species. This ability is thought to involve the plasticity of neural representations in high-level sensory cortical areas, but this plasticity is poorly understood. Using European starlings (a species of songbird) trained to recognize natural conspecific song segments, I investigated the emergence of neural representations for learned signals across two auditory forebrain regions : the caudolateral mesopallium (CLM) and the caudomedial mesopallium (CMM). In both CLM and CMM, neurons encoded more information about the motifs (short, stereotyped segments of song) that make up songs paired with reward during training than the motifs that make up novel songs. This shows that behavioral experience is an important modulator of neural encoding in the songbird auditory forebrain. In the natural world, individuals learn which signals convey relevant information for particular behaviors. However, it is unknown how this behavioral information influences neural encoding in the brain. I explored this by training starlings on a paired-motif recognition task where one motif was informative about the behavior required to obtain reward and the other motif was not informative. Following training, single neurons in CLM responded more strongly to informative motifs than to uninformative or novel motifs, whereas single neurons in CMM responded strongly to both informative and uninformative motifs. This suggests that encoding in CLM may serve to emphasize those signals that are particularly behaviorally relevant. Sensory encoding in cortical areas is distributed across many neurons. But how learning alters these neural population representations remains unexplored. To explore this question, I analyzed the correlated activity of simultaneously recorded neurons within CLM. When processing informative motifs, the correlations led to enhanced population discriminability, relative to the correlations when processing uninformative or novel motifs. Thus, the information that a sensory signal conveys about behavior modulates neural encoding in both single neurons and in neural populations. Collectively, these studies demonstrate that behavioral relevance substantially influences neural processing by both single neurons and larger populations in cortical brain regions.

Experience Dependent Changes in the Auditory Cortical Representation of Natural Sounds

Experience Dependent Changes in the Auditory Cortical Representation of Natural Sounds PDF Author: Frank Lin
Publisher:
ISBN:
Category : Auditory cortex
Languages : en
Pages :

Book Description
Vocal communication sounds are an important class of signals due to their role in social interaction, reproduction, and survival. The higher-order mechanisms by which our auditory system detects and discriminates these sounds to generate perception is still poorly understood. The auditory cortex is thought to play an important role in this process, and our current work provides new evidence that the auditory cortex changes its neural representation of sounds that are acquired in natural social contexts. We use a mouse ultrasonic communication system between pups and adult females to elucidate this. We record single neurons in the auditory cortex of awake mice, and assess the cortical differences between animals that either do (mothers) or do not (naïve virgins) recognize the pup ultrasounds as behaviorally relevant. We then evaluate the role that pup experience and the maternal physiological state play in this cortical plasticity. Finally, we develop a model to predict the responses to pup vocalizations as a way to segregate the diversity of cortical neuronal responses in the hope of more clearly assessing their roles in processing acoustic features. Our results demonstrate the detailed nature by which the core auditory cortex processes natural vocalizations, showing how it changes to represent behavioral relevance.

The Inferior Colliculus

The Inferior Colliculus PDF Author: Jeffery A. Winer
Publisher: Springer Science & Business Media
ISBN: 0387270833
Category : Science
Languages : en
Pages : 720

Book Description
Connecting the auditory brain stem to sensory, motor, and limbic systems, the inferior colliculus is a critical midbrain station for auditory processing. Winer and Schreiner's The Inferior Colliculus, a critical, comprehensive reference, presents the current knowledge of the inferior colliculus from a variety of perspectives, including anatomical, physiological, developmental, neurochemical, biophysical, neuroethological and clinical vantage points. Written by leading researchers in the field, the book is an ideal introduction to the inferior colliculus and central auditory processing for clinicians, otolaryngologists, graduate and postgraduate research workers in the auditory and other sensory-motor systems.

From Neurons to Neighborhoods

From Neurons to Neighborhoods PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309069882
Category : Social Science
Languages : en
Pages : 610

Book Description
How we raise young children is one of today's most highly personalized and sharply politicized issues, in part because each of us can claim some level of "expertise." The debate has intensified as discoveries about our development-in the womb and in the first months and years-have reached the popular media. How can we use our burgeoning knowledge to assure the well-being of all young children, for their own sake as well as for the sake of our nation? Drawing from new findings, this book presents important conclusions about nature-versus-nurture, the impact of being born into a working family, the effect of politics on programs for children, the costs and benefits of intervention, and other issues. The committee issues a series of challenges to decision makers regarding the quality of child care, issues of racial and ethnic diversity, the integration of children's cognitive and emotional development, and more. Authoritative yet accessible, From Neurons to Neighborhoods presents the evidence about "brain wiring" and how kids learn to speak, think, and regulate their behavior. It examines the effect of the climate-family, child care, community-within which the child grows.

Discrimination of Complex Sounds by Cortical Neurons

Discrimination of Complex Sounds by Cortical Neurons PDF Author: Rajiv Narayan
Publisher:
ISBN:
Category :
Languages : en
Pages : 200

Book Description
Abstract: Many animal species produce spectro-temporally complex communication calls that are crucial for species-specific interactions. While studies have revealed precisely timed responses to vocalizations in the auditory cortex (ACx) of many species, few have directly examined the contributions of spike timing to the discrimination of natural sounds by cortical neurons. Songbirds are an attractive choice for examining the processing of complex sounds because they communicate in complex acoustic settings, using vocal calls that bear striking similarities to human speech. They also possess a combination of well-studied vocal communication behavior and well defined auditory neural circuitry. Neurons in field L (the avian analog of ACx) exhibit strong responses to birdsong that could play an important role in song discrimination. In this work, we investigate neural discrimination of conspecific songs in zebra finch field L. We describe a classification framework for quantifying song discrimination based on the responses of single neurons. The technique is first applied to responses of model neurons constructed from experimentally derived spectro-temporal receptive fields of field L. We demonstrate that model neurons can accurately discriminate between songs if the responses are read at relatively fine timescales ([approximate] 10ms). We extend our analysis to electrophysiological recordings from field L neurons. We quantify the performance accuracy of single neurons and examine the timescales relevant for discrimination. A comparison with avian behavioral performance reveals that neural performance matches behavioral accuracy for the best neurons using a spike-timing based code. Finally we examine neural identification of birdsong (targets) in the presence of competing sounds (maskers). We identify two distinct forms of neural interference: addition of spurious spikes during the silent gaps between the target syllables and suppression of informative spikes during the syllables. These effects systematically decrease discrimination performance as the target intensity decreases relative to that of the masker. The behavioral performance of songbirds in a comparable task also degrades in a similar manner. Our results reveal interference effects that could explain the perceptual difficulties that occur when identifying target sounds from a mixture of competing sounds, which is often refered to as the cocktail party problem.

Handbook of Ultrasonic Vocalization

Handbook of Ultrasonic Vocalization PDF Author: Stefan M Brudzynski
Publisher: Academic Press
ISBN: 0128097736
Category : Science
Languages : en
Pages : 582

Book Description
Handbook of Ultrasonic Vocalization: Window into the Mammalian Brain, Volume 25, is an exhaustive resource on ultrasonic vocalizations in vertebrates, providing full coverage of all aspects of these vocalizations. The book also demonstrates the usefulness of ultrasonic vocalizations in studies of animal communication, sociobiological states, and in mammalian models of affective disorders, addictions and neurodevelopmental disorders, making it an indispensable resource for researchers using animal models. The book begins with the evolution of vocal communication before discussing mechanisms of ultrasound production, perception and the brain systems involved in emotional arousal that are responsible for the generation of vocalization and emotional states. In addition, the book covers studies of neuroactive agents and sociopsychological conditions that can regulate the outcome of ultrasonic vocalization and provide clues about animals’ internal states. Critically, the book also includes thorough coverage of pharmacological investigations using ultrasonic vocalizations, increasingly being utilized for studies in affective disorders, psychoses, addiction and alcoholism. No other book provides such extensive coverage of this rapidly growing field of study. Represents a multidisciplinary approach that incorporates evolution, communication, behavioral homeostasis, emotional expression and neuropsychiatric dysfunction Provides a systematic review of ultrasonic vocalizations in major groups of rodents widely used in laboratory research Discusses numerous other species across vertebrates that emit ultrasounds

Coding Strategies in Vertebrate Acoustic Communication

Coding Strategies in Vertebrate Acoustic Communication PDF Author: Thierry Aubin
Publisher: Springer Nature
ISBN: 3030392007
Category : Science
Languages : en
Pages : 325

Book Description
Information is a core concept in animal communication: individuals routinely produce, acquire, process and store information, which provides the basis for their social life. This book focuses on how animal acoustic signals code information and how this coding can be shaped by various environmental and social constraints. Taking birds and mammals, including humans, as models, the authors explore such topics as communication strategies for “public” and “private” signaling, static and dynamic signaling, the diversity of coded information and the way information is decoded by the receiver. The book appeals to a wide audience, ranging from bioacousticians, ethologists and ecologists to evolutionary biologists. Intended for students and researchers alike, it promotes the idea that Shannon and Weaver’s Mathematical Theory of Communication still represents a strong framework for understanding all aspects of the communication process, including its dynamic dimensions.

Single Neuron Studies of the Human Brain

Single Neuron Studies of the Human Brain PDF Author: Itzhak Fried
Publisher: MIT Press
ISBN: 0262324008
Category : Science
Languages : en
Pages : 391

Book Description
Foundational studies of the activities of spiking neurons in the awake and behaving human brain and the insights they yield into cognitive and clinical phenomena. In the last decade, the synergistic interaction of neurosurgeons, engineers, and neuroscientists, combined with new technologies, has enabled scientists to study the awake, behaving human brain directly. These developments allow cognitive processes to be characterized at unprecedented resolution: single neuron activity. Direct observation of the human brain has already led to major insights into such aspects of brain function as perception, language, sleep, learning, memory, action, imagery, volition, and consciousness. In this volume, experts document the successes, challenges, and opportunity in an emerging field. The book presents methodological tutorials, with chapters on such topics as the surgical implantation of electrodes and data analysis techniques; describes novel insights into cognitive functions including memory, decision making, and visual imagery; and discusses insights into diseases such as epilepsy and movement disorders gained from examining single neuron activity. Finally, contributors consider future challenges, questions that are ripe for investigation, and exciting avenues for translational efforts. Contributors Ralph Adolphs, William S. Anderson, Arjun K. Bansal, Eric J. Behnke, Moran Cerf, Jonathan O. Dostrovsky, Emad N. Eskandar, Tony A. Fields, Itzhak Fried, Hagar Gelbard-Sagiv, C. Rory Goodwin, Clement Hamani, Chris Heller, Mojgan Hodaie, Matthew Howard III, William D. Hutchison, Matias Ison, Hiroto Kawasaki, Christof Koch, Rüdiger Köhling, Gabriel Kreiman, Michel Le Van Quyen, Frederick A. Lenz, Andres M. Lozano, Adam N. Mamelak, Clarissa Martinez-Rubio, Florian Mormann, Yuval Nir, George Ojemann, Shaun R. Patel, Sanjay Patra, Linda Philpott, Rodrigo Quian Quiroga, Ian Ross, Ueli Rutishauser, Andreas Schulze-Bonhage, Erin M. Schuman, Demetrio Sierra-Mercado, Richard J. Staba, Nanthia Suthana, William Sutherling, Travis S. Tierney, Giulio Tononi, Oana Tudusciuc, Charles L. Wilson

Neural Representation of Vocalizations in Noise in the Primary Auditory Cortex of Marmoset Monkeys

Neural Representation of Vocalizations in Noise in the Primary Auditory Cortex of Marmoset Monkeys PDF Author: Ruiye Ni
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 110

Book Description
Robust auditory perception plays a pivotal function in processing behaviorally relevant sounds, particularly when there are auditory distractions from the environment. The neuronal coding enabling this ability, however, is still not well understood. In this study we recorded single-unit activity from the primary auditory cortex of alert common marmoset monkeys (Callithrix jacchus) while delivering conspecific vocalizations degraded by two different background noises: broadband white noise (WGN) and vocalization babble (Babble).Noise effects on single-unit neural representation of target vocalizations were quantified by measuring the response similarity elicited by natural vocalizations as a function of signal-to-noise ratio (SNR). Four consistent response classes (robust, balanced, insensitive, and brittle) were found under both noise conditions, with an average of about two-thirds of the neurons changing their response class when encountering different noises. These results indicate that the distortion induced by one particular masking background in single-unit responses is not necessarily predictable from that induced by another, which further suggests the low likelihood of a unique group of noise-invariant neurons across different background conditions in the primary auditory cortex. In addition, for a relatively large fraction of neurons, strong synchronized responses can be elicited by white noise alone, countering the conventional wisdom that white noise elicits relatively few temporally aligned spikes in higher auditory regions.The variable single-unit responses yet consistent population responses imply that the primate primary auditory cortex performs scene analysis predominately at the population level. Next, by pooling all single units together, pseudo-population analysis was implemented to gain more insight on how individual neurons work together to encode and discriminate vocalizations at various intensities and SNR levels. Population response variability with respect to time was found to synchronize well with the stimulus-driven firing rate of vocalizations at multiple intensities in a negative way. A much weaker trend was observed for vocalizations in noise. By applying dimensionality reduction techniques to the pooled single neuron responses, we were able to visualize the dynamics of neural ensemble responses to vocalizations in noise as trajectories in low-dimensional space. The resulting trajectories showed a clear separation between neural responses to vocalizations and WGN, while trajectories of neural responses to vocalization and Babble were much closer to each other together. Discrimination of neural populations evaluated by neural response classifiers revealed that a finer optimal temporal resolution and longer time scale of temporal dynamics were needed for vocalizations in noise than vocalizations at multiple different intensities. Last, among the whole population, a subpopulation of neurons yielded optimal discrimination performance.Together, for different background noises, the results in this dissertation provide evidence for heterogeneous responses on the individual neuron level, and for consistent response properties on the population level.

Acoustic Context Modulates Natural Sound Discrimination in Auditory Cortex Through Frequency Specific Adaptation

Acoustic Context Modulates Natural Sound Discrimination in Auditory Cortex Through Frequency Specific Adaptation PDF Author: Luciana López-Jury
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description