Learning about Cockpit Automation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Learning about Cockpit Automation PDF full book. Access full book title Learning about Cockpit Automation by National Aeronautics and Space Adm Nasa. Download full books in PDF and EPUB format.

Learning about Cockpit Automation

Learning about Cockpit Automation PDF Author: National Aeronautics and Space Adm Nasa
Publisher:
ISBN: 9781724116222
Category :
Languages : en
Pages : 26

Book Description
Two experiments explored the idea of providing cockpit automation training to airline-bound student pilots using cockpit automation equipment commonly found in small training airplanes. In a first experiment, pilots mastered a set of tasks and maneuvers using a GPS navigation computer, autopilot, and flight director system installed in a small training airplane Students were then tested on their ability to complete a similar set of tasks using the cockpit automation system found in a popular jet transport aircraft. Pilot were able to successfully complete 77% of all tasks in the jet transport on their first attempt. An analysis of a control group suggests that the pilot's success was attributable to the application of automation principles they had learned in the small airplane. A second experiment looked at two different ways of delivering small-aeroplane cockpit automation training: a self-study method, and a dual instruction method. The results showed a slight advantage for the self-study method. Overall, the results of the two studies cast a strong vote for the incorporation of cockpit automation training in curricula designed for pilot who will later transition to the jet fleet. Casner, Stephen M. Ames Research Center NASA/TM-2003-212260, NAS 1.15:212260, IH-033...

Learning about Cockpit Automation

Learning about Cockpit Automation PDF Author: National Aeronautics and Space Adm Nasa
Publisher:
ISBN: 9781724116222
Category :
Languages : en
Pages : 26

Book Description
Two experiments explored the idea of providing cockpit automation training to airline-bound student pilots using cockpit automation equipment commonly found in small training airplanes. In a first experiment, pilots mastered a set of tasks and maneuvers using a GPS navigation computer, autopilot, and flight director system installed in a small training airplane Students were then tested on their ability to complete a similar set of tasks using the cockpit automation system found in a popular jet transport aircraft. Pilot were able to successfully complete 77% of all tasks in the jet transport on their first attempt. An analysis of a control group suggests that the pilot's success was attributable to the application of automation principles they had learned in the small airplane. A second experiment looked at two different ways of delivering small-aeroplane cockpit automation training: a self-study method, and a dual instruction method. The results showed a slight advantage for the self-study method. Overall, the results of the two studies cast a strong vote for the incorporation of cockpit automation training in curricula designed for pilot who will later transition to the jet fleet. Casner, Stephen M. Ames Research Center NASA/TM-2003-212260, NAS 1.15:212260, IH-033...

Learning About Cockpit Automation: From Piston Trainer to Jet Transport

Learning About Cockpit Automation: From Piston Trainer to Jet Transport PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 30

Book Description


Teaching Cockpit Automation in the Classroom

Teaching Cockpit Automation in the Classroom PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 56

Book Description


Cockpit Automation, Flight Systems Complexity, and Aircraft Certification

Cockpit Automation, Flight Systems Complexity, and Aircraft Certification PDF Author: Bart Elias
Publisher:
ISBN: 9781701317819
Category :
Languages : en
Pages : 38

Book Description
The increasing complexity and automation of flight control systems pose a challenge to federal policy regarding aircraft certification and pilot training. Despite significant commercial aviation safety improvements over the past two decades, flight control automation and aircraft complexity have been cited as contributing factors in a number of major airline accidents, including two high-profile crashes overseas involving the recently introduced Boeing 737 Max variant in 2018 and 2019. These crashes have directed attention to Federal Aviation Administration (FAA) oversight of aircraft type certification and pilot training practices for transport category aircraft, particularly as they pertain to complex automated flight control systems. As aircraft systems have evolved over the past three decades to incorporate new technologies, Congress has mandated FAA to streamline certification processes, with the primary motivation being to facilitate the development of new safety-enhancing technologies. Modern commercial aircraft rely on "fly-by-wire" flight control technologies, under which pilots' flight control inputs are sent to computers rather than through direct mechanical linkages to flight control systems. The fly-by-wire software contains flight control laws and logic that, in addition to optimizing performance efficiency, protect the aircraft from commanded actions that could put the airplane in an unsafe state. Automated flight control systems have largely been viewed as having a positive effect on safety, and accident rates have improved considerably over the past two decades. However, the increasing complexity of automated flight systems has sometimes caused confusion and uncertainty, contributing to improper pilot actions during critical phases of flight and in some cases leading pilots to unintentionally place an aircraft in an unsafe condition. Besides designing these systems in a manner that minimizes pilot errors and the consequences of those errors, aircraft designers and operators face challenges regarding maintaining piloting skills for flight crews to be able to take over and manually fly the aircraft safely if critical systems fail. They also face challenges regarding documentation and pilot training effectiveness in building accurate mental models of how these complex systems operate. The primary goals of ongoing efforts to address these challenges are to enhance pilot situation awareness when using automation and reduce the likelihood of mode errors and confusion, while at the same time not overburdening pilots with intricate systems knowledge beyond what is necessary. In the ongoing investigations of two Boeing 737 Max crashes, Lion Air flight 610 and Ethiopian Airlines flight 302, concerns have been raised about the design of an automated feature called the Maneuvering Characteristics Augmentation System (MCAS) and its reliance on a single angle-of-attack sensor even though the aircraft is equipped with two such sensors. These concerns led to the worldwide grounding of all Boeing 737 Max aircraft until the MCAS safety concerns can be resolved, significantly impacting both U.S. and foreign airlines that operate the aircraft. These recent aviation accidents have prompted reviews of the manner in which modern transport category aircraft are certified by FAA and its foreign counterparts, and in particular, the roles of regulators and manufacturers in the certification process. The challenges of certifying increasingly complex aircraft are largely being met by delegating more of FAA's certification functions to aircraft designers and manufacturers. This raises potential conflicts between safety and quality assurance on the one hand and competitive pressures to market and deliver aircraft on the other. Under Organization Designation Authorization (ODA), FAA can designate companies to carry out delegated certification functions on its behalf.

Human Performance on the Flight Deck

Human Performance on the Flight Deck PDF Author: Don Harris
Publisher: CRC Press
ISBN: 1351929690
Category : Technology & Engineering
Languages : en
Pages : 384

Book Description
Taking an integrated, systems approach to dealing exclusively with the human performance issues encountered on the flight deck of the modern airliner, this book describes the inter-relationships between the various application areas of human factors, recognising that the human contribution to the operation of an airliner does not fall into neat pigeonholes. The relationship between areas such as pilot selection, training, flight deck design and safety management is continually emphasised within the book. It also affirms the upside of human factors in aviation - the positive contribution that it can make to the industry - and avoids placing undue emphasis on when the human component fails. The book is divided into four main parts. Part one describes the underpinning science base, with chapters on human information processing, workload, situation awareness, decision making, error and individual differences. Part two of the book looks at the human in the system, containing chapters on pilot selection, simulation and training, stress, fatigue and alcohol, and environmental stressors. Part three takes a closer look at the machine (the aircraft), beginning with an examination of flight deck display design, followed by chapters on aircraft control, flight deck automation, and HCI on the flight deck. Part four completes the volume with a consideration of safety management issues, both on the flight deck and across the airline; the final chapter in this section looks at human factors for incident and accident investigation. The book is written for professionals within the aviation industry, both on the flight deck and elsewhere, for post-graduate students and for researchers working in the area.

FAA Aviation News

FAA Aviation News PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 500

Book Description


Engineering Psychology and Cognitive Ergonomics

Engineering Psychology and Cognitive Ergonomics PDF Author: Don Harris
Publisher: Springer Science & Business Media
ISBN: 3642027288
Category : Technology & Engineering
Languages : en
Pages : 638

Book Description
The 13th International Conference on Human–Computer Interaction, HCI Inter- tional 2009, was held in San Diego, California, USA, July 19–24, 2009, jointly with the Symposium on Human Interface (Japan) 2009, the 8th International Conference on Engineering Psychology and Cognitive Ergonomics, the 5th International Conference on Universal Access in Human-Computer Interaction, the Third International Conf- ence on Virtual and Mixed Reality, the Third International Conference on Internati- alization, Design and Global Development, the Third International Conference on Online Communities and Social Computing, the 5th International Conference on Augmented Cognition, the Second International Conference on Digital Human Mod- ing, and the First International Conference on Human Centered Design. A total of 4,348 individuals from academia, research institutes, industry and gove- mental agencies from 73 countries submitted contributions, and 1,397 papers that were judged to be of high scientific quality were included in the program. These papers - dress the latest research and development efforts and highlight the human aspects of the design and use of computing systems. The papers accepted for presentation thoroughly cover the entire field of human-computer interaction, addressing major advances in knowledge and effective use of computers in a variety of application areas.

Coping with Computers in the Cockpit

Coping with Computers in the Cockpit PDF Author: Sidney Dekker
Publisher: Routledge
ISBN: 0429864205
Category : Social Science
Languages : en
Pages : 248

Book Description
First published in 1999, this volume examined how increasing cockpit automation in commercial fleets across the world has had a profound impact on the cognitive work that is carried out on the flight deck. Pilots have largely been transformed into supervisory controllers, managing a suite of human and automated resources. Operational and training requirements have changed, and the potential for human error and system breakdown has shifted. This compelling book critically examines how airlines, regulators, educators and manufacturers cope with these and other consequences of advanced aircraft automation.

Identifying and Mitigating the Risks of Cockpit Automation

Identifying and Mitigating the Risks of Cockpit Automation PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages :

Book Description


Identifying and Mitigating the Risks of Cockpit Automation

Identifying and Mitigating the Risks of Cockpit Automation PDF Author: Major Usaf Olson, Wesley
Publisher: Createspace Independent Pub
ISBN: 9781479324392
Category : History
Languages : en
Pages : 48

Book Description
Cockpit automation has delivered many promised benefits, such as improved system safety and efficiency; however, at the same time it has imposed system costs that are often manifest in the forms of mode confusion, errors of omission, and automation surprises. An understanding of the nature of these costs as well as associated influencing factors is necessary to design adequately the future automated systems that will be required for Air Mobility Command aircraft to operate in the future air traffic environment. This paper reviews and synthesizes human factors research on the costs of cockpit automation. These results are interpreted by modeling the automated cockpit as a supervisory control system in which the pilot works with, but is not replaced by, automated systems. From this viewpoint, pilot roles in the automated cockpit provide new opportunities for error in instructing, monitoring, and intervening in automated systems behavior. These opportunities for error are exacerbated by the limited machine coordination capabilities, limits on human coordination capabilities, and properties of machine systems that place new attention and knowledge demands on the human operator. In order to mitigate the risks posed by these known opportunities for error and associated influencing factors a system of defenses in depth is required involving integrated innovations in design, procedures, and training. The issues raised in this paper are not specific to transport aircraft or the broader aviation domain but apply to all current and future highly automated military systems.