Author: Bhagvan Kommadi
Publisher: Packt Publishing Ltd
ISBN: 178961841X
Category : Computers
Languages : en
Pages : 324
Book Description
Explore Golang's data structures and algorithms to design, implement, and analyze code in the professional setting Key FeaturesLearn the basics of data structures and algorithms and implement them efficientlyUse data structures such as arrays, stacks, trees, lists and graphs in real-world scenariosCompare the complexity of different algorithms and data structures for improved code performanceBook Description Golang is one of the fastest growing programming languages in the software industry. Its speed, simplicity, and reliability make it the perfect choice for building robust applications. This brings the need to have a solid foundation in data structures and algorithms with Go so as to build scalable applications. Complete with hands-on tutorials, this book will guide you in using the best data structures and algorithms for problem solving. The book begins with an introduction to Go data structures and algorithms. You'll learn how to store data using linked lists, arrays, stacks, and queues. Moving ahead, you'll discover how to implement sorting and searching algorithms, followed by binary search trees. This book will also help you improve the performance of your applications by stringing data types and implementing hash structures in algorithm design. Finally, you'll be able to apply traditional data structures to solve real-world problems. By the end of the book, you'll have become adept at implementing classic data structures and algorithms in Go, propelling you to become a confident Go programmer. What you will learnImprove application performance using the most suitable data structure and algorithmExplore the wide range of classic algorithms such as recursion and hashing algorithmsWork with algorithms such as garbage collection for efficient memory management Analyze the cost and benefit trade-off to identify algorithms and data structures for problem solvingExplore techniques for writing pseudocode algorithm and ace whiteboard coding in interviewsDiscover the pitfalls in selecting data structures and algorithms by predicting their speed and efficiencyWho this book is for This book is for developers who want to understand how to select the best data structures and algorithms that will help solve coding problems. Basic Go programming experience will be an added advantage.
Learn Data Structures and Algorithms with Golang
Data Structures & Algorithms In Go
Author: Hemant Jain
Publisher: Independently Published
ISBN: 9781099552069
Category :
Languages : en
Pages : 446
Book Description
Data Structures & Algorithms books by Hemant Jain is a series of books about the usage of Data Structures and Algorithms in computer programming. The book is easy to follow and is written for interview preparation point of view. In these books, the examples are solved in various languages like Go, C, C++, Java, C#, Python, VB, JavaScript and PHP. GitHub Repositories for these books. https: //github.com/Hemant-Jain-Author Book's Composition This book introduces you to the world of data structures and algorithms. Data structures defines the way in which data is arranged in memory for fast and efficient access while algorithms are a set of instruction to solve problems by manipulating these data structures. Designing an efficient algorithm is a very important skill that all software companies, e.g. Microsoft, Google, Facebook etc. pursues. Most of the interviews for these companies are focused on knowledge of data-structures and algorithms. They look for how candidates use concepts of data structures and algorithms to solve complex problems efficiently. Apart from knowing, a programming language you also need to have good command of these key computer fundamentals to not only qualify the interview but also excel in you jobs as a software engineer. This book assumes that you are a C language developer. You are not an expert in C language, but you are well familiar with concepts of classes, functions, arrays, pointers and recursion. At the start of this book, we will be looking into Complexity Analysis followed by the various data structures and their algorithms. We will be looking into a Linked-List, Stack, Queue, Trees, Heap, Hash-Table and Graphs. We will also be looking into Sorting, Searching techniques. In last few chapters, we will be looking into various algorithmic techniques. Such as, Brute-Force algorithms, Greedy algorithms, Divide and Conquer algorithms, Dynamic Programming, Reduction and Backtracking. . Table of Contents Chapter 0: How to use this book. Chapter 1: Algorithms Analysis Chapter 2: Approach to solve algorithm design problems Chapter 3: Abstract Data Type & C# Collections Chapter 4: Searching Chapter 5: Sorting Chapter 6: Linked List Chapter 7: Stack Chapter 8: Queue Chapter 9: Tree Chapter 10: Priority Queue Chapter 11: Hash-Table Chapter 12: Graphs Chapter 13: String Algorithms Chapter 14: Algorithm Design Techniques Chapter 15: Brute Force Algorithm Chapter 16: Greedy Algorithm Chapter 17: Divide & Conquer Chapter 18: Dynamic Programming Chapter 19: Backtracking Chapter 20: Complexity Theor
Publisher: Independently Published
ISBN: 9781099552069
Category :
Languages : en
Pages : 446
Book Description
Data Structures & Algorithms books by Hemant Jain is a series of books about the usage of Data Structures and Algorithms in computer programming. The book is easy to follow and is written for interview preparation point of view. In these books, the examples are solved in various languages like Go, C, C++, Java, C#, Python, VB, JavaScript and PHP. GitHub Repositories for these books. https: //github.com/Hemant-Jain-Author Book's Composition This book introduces you to the world of data structures and algorithms. Data structures defines the way in which data is arranged in memory for fast and efficient access while algorithms are a set of instruction to solve problems by manipulating these data structures. Designing an efficient algorithm is a very important skill that all software companies, e.g. Microsoft, Google, Facebook etc. pursues. Most of the interviews for these companies are focused on knowledge of data-structures and algorithms. They look for how candidates use concepts of data structures and algorithms to solve complex problems efficiently. Apart from knowing, a programming language you also need to have good command of these key computer fundamentals to not only qualify the interview but also excel in you jobs as a software engineer. This book assumes that you are a C language developer. You are not an expert in C language, but you are well familiar with concepts of classes, functions, arrays, pointers and recursion. At the start of this book, we will be looking into Complexity Analysis followed by the various data structures and their algorithms. We will be looking into a Linked-List, Stack, Queue, Trees, Heap, Hash-Table and Graphs. We will also be looking into Sorting, Searching techniques. In last few chapters, we will be looking into various algorithmic techniques. Such as, Brute-Force algorithms, Greedy algorithms, Divide and Conquer algorithms, Dynamic Programming, Reduction and Backtracking. . Table of Contents Chapter 0: How to use this book. Chapter 1: Algorithms Analysis Chapter 2: Approach to solve algorithm design problems Chapter 3: Abstract Data Type & C# Collections Chapter 4: Searching Chapter 5: Sorting Chapter 6: Linked List Chapter 7: Stack Chapter 8: Queue Chapter 9: Tree Chapter 10: Priority Queue Chapter 11: Hash-Table Chapter 12: Graphs Chapter 13: String Algorithms Chapter 14: Algorithm Design Techniques Chapter 15: Brute Force Algorithm Chapter 16: Greedy Algorithm Chapter 17: Divide & Conquer Chapter 18: Dynamic Programming Chapter 19: Backtracking Chapter 20: Complexity Theor
Introduction to Algorithms, fourth edition
Author: Thomas H. Cormen
Publisher: MIT Press
ISBN: 026204630X
Category : Computers
Languages : en
Pages : 1313
Book Description
A comprehensive update of the leading algorithms text, with new material on matchings in bipartite graphs, online algorithms, machine learning, and other topics. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. It covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers, with self-contained chapters and algorithms in pseudocode. Since the publication of the first edition, Introduction to Algorithms has become the leading algorithms text in universities worldwide as well as the standard reference for professionals. This fourth edition has been updated throughout. New for the fourth edition New chapters on matchings in bipartite graphs, online algorithms, and machine learning New material on topics including solving recurrence equations, hash tables, potential functions, and suffix arrays 140 new exercises and 22 new problems Reader feedback–informed improvements to old problems Clearer, more personal, and gender-neutral writing style Color added to improve visual presentation Notes, bibliography, and index updated to reflect developments in the field Website with new supplementary material Warning: Avoid counterfeit copies of Introduction to Algorithms by buying only from reputable retailers. Counterfeit and pirated copies are incomplete and contain errors.
Publisher: MIT Press
ISBN: 026204630X
Category : Computers
Languages : en
Pages : 1313
Book Description
A comprehensive update of the leading algorithms text, with new material on matchings in bipartite graphs, online algorithms, machine learning, and other topics. Some books on algorithms are rigorous but incomplete; others cover masses of material but lack rigor. Introduction to Algorithms uniquely combines rigor and comprehensiveness. It covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers, with self-contained chapters and algorithms in pseudocode. Since the publication of the first edition, Introduction to Algorithms has become the leading algorithms text in universities worldwide as well as the standard reference for professionals. This fourth edition has been updated throughout. New for the fourth edition New chapters on matchings in bipartite graphs, online algorithms, and machine learning New material on topics including solving recurrence equations, hash tables, potential functions, and suffix arrays 140 new exercises and 22 new problems Reader feedback–informed improvements to old problems Clearer, more personal, and gender-neutral writing style Color added to improve visual presentation Notes, bibliography, and index updated to reflect developments in the field Website with new supplementary material Warning: Avoid counterfeit copies of Introduction to Algorithms by buying only from reputable retailers. Counterfeit and pirated copies are incomplete and contain errors.
Think Data Structures
Author: Allen B. Downey
Publisher: "O'Reilly Media, Inc."
ISBN: 1491972319
Category : Computers
Languages : en
Pages : 149
Book Description
If you’re a student studying computer science or a software developer preparing for technical interviews, this practical book will help you learn and review some of the most important ideas in software engineering—data structures and algorithms—in a way that’s clearer, more concise, and more engaging than other materials. By emphasizing practical knowledge and skills over theory, author Allen Downey shows you how to use data structures to implement efficient algorithms, and then analyze and measure their performance. You’ll explore the important classes in the Java collections framework (JCF), how they’re implemented, and how they’re expected to perform. Each chapter presents hands-on exercises supported by test code online. Use data structures such as lists and maps, and understand how they work Build an application that reads Wikipedia pages, parses the contents, and navigates the resulting data tree Analyze code to predict how fast it will run and how much memory it will require Write classes that implement the Map interface, using a hash table and binary search tree Build a simple web search engine with a crawler, an indexer that stores web page contents, and a retriever that returns user query results Other books by Allen Downey include Think Java, Think Python, Think Stats, and Think Bayes.
Publisher: "O'Reilly Media, Inc."
ISBN: 1491972319
Category : Computers
Languages : en
Pages : 149
Book Description
If you’re a student studying computer science or a software developer preparing for technical interviews, this practical book will help you learn and review some of the most important ideas in software engineering—data structures and algorithms—in a way that’s clearer, more concise, and more engaging than other materials. By emphasizing practical knowledge and skills over theory, author Allen Downey shows you how to use data structures to implement efficient algorithms, and then analyze and measure their performance. You’ll explore the important classes in the Java collections framework (JCF), how they’re implemented, and how they’re expected to perform. Each chapter presents hands-on exercises supported by test code online. Use data structures such as lists and maps, and understand how they work Build an application that reads Wikipedia pages, parses the contents, and navigates the resulting data tree Analyze code to predict how fast it will run and how much memory it will require Write classes that implement the Map interface, using a hash table and binary search tree Build a simple web search engine with a crawler, an indexer that stores web page contents, and a retriever that returns user query results Other books by Allen Downey include Think Java, Think Python, Think Stats, and Think Bayes.
Graphic Go Algorithms
Author: Yang Hu
Publisher:
ISBN:
Category :
Languages : en
Pages : 232
Book Description
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your algorithms. You'll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. this book illustrates how graph algorithms deliver data structure and algorithmsThis practical book walks you through hands-on examples of how to use graph algorithms in Go.Learn how graph analytics vary from conventional algorithms analysisUnderstand how classic graph algorithms work, and how they are appliedExplore algorithm examples with working code and sample dada.The complexity of life, because they do not understand to simplify the complex, simple is the beginning of wisdom. From the essence of practice, this book to briefly explain the concept and vividly cultivate programming interest, you will learn it easy, fast and well
Publisher:
ISBN:
Category :
Languages : en
Pages : 232
Book Description
Discover how graph algorithms can help you leverage the relationships within your data to develop more intelligent solutions and enhance your algorithms. You'll learn how graph analytics are uniquely suited to unfold complex structures and reveal difficult-to-find patterns lurking in your data. this book illustrates how graph algorithms deliver data structure and algorithmsThis practical book walks you through hands-on examples of how to use graph algorithms in Go.Learn how graph analytics vary from conventional algorithms analysisUnderstand how classic graph algorithms work, and how they are appliedExplore algorithm examples with working code and sample dada.The complexity of life, because they do not understand to simplify the complex, simple is the beginning of wisdom. From the essence of practice, this book to briefly explain the concept and vividly cultivate programming interest, you will learn it easy, fast and well
Data Structures and Algorithms in Python
Author: Michael T. Goodrich
Publisher: Wiley Global Education
ISBN: 1118476735
Category : Computers
Languages : en
Pages : 770
Book Description
Based on the authors' market leading data structures books in Java and C++, this book offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for Python data structures. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++. Begins by discussing Python's conceptually simple syntax, which allows for a greater focus on concepts. Employs a consistent object-oriented viewpoint throughout the text. Presents each data structure using ADTs and their respective implementations and introduces important design patterns as a means to organize those implementations into classes, methods, and objects. Provides a thorough discussion on the analysis and design of fundamental data structures. Includes many helpful Python code examples, with source code provided on the website. Uses illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Provides hundreds of exercises that promote creativity, help readers learn how to think like programmers, and reinforce important concepts. Contains many Python-code and pseudo-code fragments, and hundreds of exercises, which are divided into roughly 40% reinforcement exercises, 40% creativity exercises, and 20% programming projects.
Publisher: Wiley Global Education
ISBN: 1118476735
Category : Computers
Languages : en
Pages : 770
Book Description
Based on the authors' market leading data structures books in Java and C++, this book offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for Python data structures. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++. Begins by discussing Python's conceptually simple syntax, which allows for a greater focus on concepts. Employs a consistent object-oriented viewpoint throughout the text. Presents each data structure using ADTs and their respective implementations and introduces important design patterns as a means to organize those implementations into classes, methods, and objects. Provides a thorough discussion on the analysis and design of fundamental data structures. Includes many helpful Python code examples, with source code provided on the website. Uses illustrations to present data structures and algorithms, as well as their analysis, in a clear, visual manner. Provides hundreds of exercises that promote creativity, help readers learn how to think like programmers, and reinforce important concepts. Contains many Python-code and pseudo-code fragments, and hundreds of exercises, which are divided into roughly 40% reinforcement exercises, 40% creativity exercises, and 20% programming projects.
A Common-Sense Guide to Data Structures and Algorithms, Second Edition
Author: Jay Wengrow
Publisher: Pragmatic Bookshelf
ISBN: 1680508059
Category : Computers
Languages : en
Pages : 714
Book Description
Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today’s web and mobile apps. Take a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code, with examples in JavaScript, Python, and Ruby. This new and revised second edition features new chapters on recursion, dynamic programming, and using Big O in your daily work. Use Big O notation to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You’ll even encounter a single keyword that can give your code a turbo boost. Practice your new skills with exercises in every chapter, along with detailed solutions. Use these techniques today to make your code faster and more scalable.
Publisher: Pragmatic Bookshelf
ISBN: 1680508059
Category : Computers
Languages : en
Pages : 714
Book Description
Algorithms and data structures are much more than abstract concepts. Mastering them enables you to write code that runs faster and more efficiently, which is particularly important for today’s web and mobile apps. Take a practical approach to data structures and algorithms, with techniques and real-world scenarios that you can use in your daily production code, with examples in JavaScript, Python, and Ruby. This new and revised second edition features new chapters on recursion, dynamic programming, and using Big O in your daily work. Use Big O notation to measure and articulate the efficiency of your code, and modify your algorithm to make it faster. Find out how your choice of arrays, linked lists, and hash tables can dramatically affect the code you write. Use recursion to solve tricky problems and create algorithms that run exponentially faster than the alternatives. Dig into advanced data structures such as binary trees and graphs to help scale specialized applications such as social networks and mapping software. You’ll even encounter a single keyword that can give your code a turbo boost. Practice your new skills with exercises in every chapter, along with detailed solutions. Use these techniques today to make your code faster and more scalable.
Learning Functional Data Structures and Algorithms
Author: Atul S. Khot
Publisher: Packt Publishing Ltd
ISBN: 178588588X
Category : Computers
Languages : en
Pages : 312
Book Description
Learn functional data structures and algorithms for your applications and bring their benefits to your work now About This Book Moving from object-oriented programming to functional programming? This book will help you get started with functional programming. Easy-to-understand explanations of practical topics will help you get started with functional data structures. Illustrative diagrams to explain the algorithms in detail. Get hands-on practice of Scala to get the most out of functional programming. Who This Book Is For This book is for those who have some experience in functional programming languages. The data structures in this book are primarily written in Scala, however implementing the algorithms in other functional languages should be straight forward. What You Will Learn Learn to think in the functional paradigm Understand common data structures and the associated algorithms, as well as the context in which they are commonly used Take a look at the runtime and space complexities with the O notation See how ADTs are implemented in a functional setting Explore the basic theme of immutability and persistent data structures Find out how the internal algorithms are redesigned to exploit structural sharing, so that the persistent data structures perform well, avoiding needless copying. Get to know functional features like lazy evaluation and recursion used to implement efficient algorithms Gain Scala best practices and idioms In Detail Functional data structures have the power to improve the codebase of an application and improve efficiency. With the advent of functional programming and with powerful functional languages such as Scala, Clojure and Elixir becoming part of important enterprise applications, functional data structures have gained an important place in the developer toolkit. Immutability is a cornerstone of functional programming. Immutable and persistent data structures are thread safe by definition and hence very appealing for writing robust concurrent programs. How do we express traditional algorithms in functional setting? Won't we end up copying too much? Do we trade performance for versioned data structures? This book attempts to answer these questions by looking at functional implementations of traditional algorithms. It begins with a refresher and consolidation of what functional programming is all about. Next, you'll get to know about Lists, the work horse data type for most functional languages. We show what structural sharing means and how it helps to make immutable data structures efficient and practical. Scala is the primary implementation languages for most of the examples. At times, we also present Clojure snippets to illustrate the underlying fundamental theme. While writing code, we use ADTs (abstract data types). Stacks, Queues, Trees and Graphs are all familiar ADTs. You will see how these ADTs are implemented in a functional setting. We look at implementation techniques like amortization and lazy evaluation to ensure efficiency. By the end of the book, you will be able to write efficient functional data structures and algorithms for your applications. Style and approach Step-by-step topics will help you get started with functional programming. Learn by doing with hands-on code snippets that give you practical experience of the subject.
Publisher: Packt Publishing Ltd
ISBN: 178588588X
Category : Computers
Languages : en
Pages : 312
Book Description
Learn functional data structures and algorithms for your applications and bring their benefits to your work now About This Book Moving from object-oriented programming to functional programming? This book will help you get started with functional programming. Easy-to-understand explanations of practical topics will help you get started with functional data structures. Illustrative diagrams to explain the algorithms in detail. Get hands-on practice of Scala to get the most out of functional programming. Who This Book Is For This book is for those who have some experience in functional programming languages. The data structures in this book are primarily written in Scala, however implementing the algorithms in other functional languages should be straight forward. What You Will Learn Learn to think in the functional paradigm Understand common data structures and the associated algorithms, as well as the context in which they are commonly used Take a look at the runtime and space complexities with the O notation See how ADTs are implemented in a functional setting Explore the basic theme of immutability and persistent data structures Find out how the internal algorithms are redesigned to exploit structural sharing, so that the persistent data structures perform well, avoiding needless copying. Get to know functional features like lazy evaluation and recursion used to implement efficient algorithms Gain Scala best practices and idioms In Detail Functional data structures have the power to improve the codebase of an application and improve efficiency. With the advent of functional programming and with powerful functional languages such as Scala, Clojure and Elixir becoming part of important enterprise applications, functional data structures have gained an important place in the developer toolkit. Immutability is a cornerstone of functional programming. Immutable and persistent data structures are thread safe by definition and hence very appealing for writing robust concurrent programs. How do we express traditional algorithms in functional setting? Won't we end up copying too much? Do we trade performance for versioned data structures? This book attempts to answer these questions by looking at functional implementations of traditional algorithms. It begins with a refresher and consolidation of what functional programming is all about. Next, you'll get to know about Lists, the work horse data type for most functional languages. We show what structural sharing means and how it helps to make immutable data structures efficient and practical. Scala is the primary implementation languages for most of the examples. At times, we also present Clojure snippets to illustrate the underlying fundamental theme. While writing code, we use ADTs (abstract data types). Stacks, Queues, Trees and Graphs are all familiar ADTs. You will see how these ADTs are implemented in a functional setting. We look at implementation techniques like amortization and lazy evaluation to ensure efficiency. By the end of the book, you will be able to write efficient functional data structures and algorithms for your applications. Style and approach Step-by-step topics will help you get started with functional programming. Learn by doing with hands-on code snippets that give you practical experience of the subject.
Data Structures, Algorithms, and Software Principles in C
Author: Thomas A. Standish
Publisher: Pearson
ISBN:
Category : Computers
Languages : en
Pages : 778
Book Description
Using C, this book develops the concepts and theory of data structures and algorithm analysis in a gradual, step-by-step manner, proceeding from concrete examples to abstract principles. Standish covers a wide range of both traditional and contemporary software engineering topics. The text also includes an introduction to object-oriented programming using C++. By introducing recurring themes such as levels of abstraction, recursion, efficiency, representation and trade-offs, the author unifies the material throughout. Mathematical foundations can be incorporated at a variety of depths, allowing the appropriate amount of math for each user.
Publisher: Pearson
ISBN:
Category : Computers
Languages : en
Pages : 778
Book Description
Using C, this book develops the concepts and theory of data structures and algorithm analysis in a gradual, step-by-step manner, proceeding from concrete examples to abstract principles. Standish covers a wide range of both traditional and contemporary software engineering topics. The text also includes an introduction to object-oriented programming using C++. By introducing recurring themes such as levels of abstraction, recursion, efficiency, representation and trade-offs, the author unifies the material throughout. Mathematical foundations can be incorporated at a variety of depths, allowing the appropriate amount of math for each user.
R Data Structures and Algorithms
Author: Dr. PKS Prakash
Publisher: Packt Publishing Ltd
ISBN: 1786464160
Category : Computers
Languages : en
Pages : 266
Book Description
Increase speed and performance of your applications with efficient data structures and algorithms About This Book See how to use data structures such as arrays, stacks, trees, lists, and graphs through real-world examples Find out about important and advanced data structures such as searching and sorting algorithms Understand important concepts such as big-o notation, dynamic programming, and functional data structured Who This Book Is For This book is for R developers who want to use data structures efficiently. Basic knowledge of R is expected. What You Will Learn Understand the rationality behind data structures and algorithms Understand computation evaluation of a program featuring asymptotic and empirical algorithm analysis Get to know the fundamentals of arrays and linked-based data structures Analyze types of sorting algorithms Search algorithms along with hashing Understand linear and tree-based indexing Be able to implement a graph including topological sort, shortest path problem, and Prim's algorithm Understand dynamic programming (Knapsack) and randomized algorithms In Detail In this book, we cover not only classical data structures, but also functional data structures. We begin by answering the fundamental question: why data structures? We then move on to cover the relationship between data structures and algorithms, followed by an analysis and evaluation of algorithms. We introduce the fundamentals of data structures, such as lists, stacks, queues, and dictionaries, using real-world examples. We also cover topics such as indexing, sorting, and searching in depth. Later on, you will be exposed to advanced topics such as graph data structures, dynamic programming, and randomized algorithms. You will come to appreciate the intricacies of high performance and scalable programming using R. We also cover special R data structures such as vectors, data frames, and atomic vectors. With this easy-to-read book, you will be able to understand the power of linked lists, double linked lists, and circular linked lists. We will also explore the application of binary search and will go in depth into sorting algorithms such as bubble sort, selection sort, insertion sort, and merge sort. Style and approach This easy-to-read book with its fast-paced nature will improve the productivity of an R programmer and improve the performance of R applications. It is packed with real-world examples.
Publisher: Packt Publishing Ltd
ISBN: 1786464160
Category : Computers
Languages : en
Pages : 266
Book Description
Increase speed and performance of your applications with efficient data structures and algorithms About This Book See how to use data structures such as arrays, stacks, trees, lists, and graphs through real-world examples Find out about important and advanced data structures such as searching and sorting algorithms Understand important concepts such as big-o notation, dynamic programming, and functional data structured Who This Book Is For This book is for R developers who want to use data structures efficiently. Basic knowledge of R is expected. What You Will Learn Understand the rationality behind data structures and algorithms Understand computation evaluation of a program featuring asymptotic and empirical algorithm analysis Get to know the fundamentals of arrays and linked-based data structures Analyze types of sorting algorithms Search algorithms along with hashing Understand linear and tree-based indexing Be able to implement a graph including topological sort, shortest path problem, and Prim's algorithm Understand dynamic programming (Knapsack) and randomized algorithms In Detail In this book, we cover not only classical data structures, but also functional data structures. We begin by answering the fundamental question: why data structures? We then move on to cover the relationship between data structures and algorithms, followed by an analysis and evaluation of algorithms. We introduce the fundamentals of data structures, such as lists, stacks, queues, and dictionaries, using real-world examples. We also cover topics such as indexing, sorting, and searching in depth. Later on, you will be exposed to advanced topics such as graph data structures, dynamic programming, and randomized algorithms. You will come to appreciate the intricacies of high performance and scalable programming using R. We also cover special R data structures such as vectors, data frames, and atomic vectors. With this easy-to-read book, you will be able to understand the power of linked lists, double linked lists, and circular linked lists. We will also explore the application of binary search and will go in depth into sorting algorithms such as bubble sort, selection sort, insertion sort, and merge sort. Style and approach This easy-to-read book with its fast-paced nature will improve the productivity of an R programmer and improve the performance of R applications. It is packed with real-world examples.