Lean Burn and Stratified Combustion Strategies for Small Utility Engines PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Lean Burn and Stratified Combustion Strategies for Small Utility Engines PDF full book. Access full book title Lean Burn and Stratified Combustion Strategies for Small Utility Engines by Chandan Mahato. Download full books in PDF and EPUB format.

Lean Burn and Stratified Combustion Strategies for Small Utility Engines

Lean Burn and Stratified Combustion Strategies for Small Utility Engines PDF Author: Chandan Mahato
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 164

Book Description
The research presented in this thesis is an effort to improve small engine combustion through the application of lean combustion. The first part of the research is focused on conducting an experimental investigation into the application of lean burn strategy on a single cylinder OHV utility engine to reduce engine-out emissions and at the same time maintain acceptable cyclic variability in combustion. The parameters of interest to investigate cyclic variability in combustion were spark plug variations, load control and charge stratification. The main findings showed that the spark discharge energy had a major influence on engine performance. It was also found that the engine can be operated at a high volumetric efficiency and very lean AFR at 75% and 50% load by the use of fuel injection. This is especially helpful for small engines operating on the EPA B-cycle. The second part of the research deals with the study of a Flat head, also known as side valve (SV) engine platform. A novel approach to lean combustion in a flat head engine is proposed by directly injecting gasoline fuel into the combustion chamber. The main advantage of the direct injection flat head (DIFH) engine over the conventional OHV GDI engine is its simplicity in design, low cost and, greater flexibility in placement of key engine performance hardware in the cylinder head. To first understand the behavior of the in-cylinder air motion, the air-flow structure developing within the combustion chamber was investigated using PIV techniques. The results show that squish is the dominant turbulence generating mean flow structure in the combustion chamber of the DIFH engine. Although the DIFH engine produced about 8 times more UHC emissions as compared to the conventional spark ignited OHV engines, it produced about 5 times less CO emissions as compared to the OHV engine and showed a 16% improvement in brake specific fuel consumption. The current combustion chamber has a dual chamber design exhibiting different combustion mechanisms in both the chambers, causing complex undesirable interactions between key engine performance parameters. Based on these fundamental studies a new combustion chamber design is presented for better performance.

Lean Burn and Stratified Combustion Strategies for Small Utility Engines

Lean Burn and Stratified Combustion Strategies for Small Utility Engines PDF Author: Chandan Mahato
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages : 164

Book Description
The research presented in this thesis is an effort to improve small engine combustion through the application of lean combustion. The first part of the research is focused on conducting an experimental investigation into the application of lean burn strategy on a single cylinder OHV utility engine to reduce engine-out emissions and at the same time maintain acceptable cyclic variability in combustion. The parameters of interest to investigate cyclic variability in combustion were spark plug variations, load control and charge stratification. The main findings showed that the spark discharge energy had a major influence on engine performance. It was also found that the engine can be operated at a high volumetric efficiency and very lean AFR at 75% and 50% load by the use of fuel injection. This is especially helpful for small engines operating on the EPA B-cycle. The second part of the research deals with the study of a Flat head, also known as side valve (SV) engine platform. A novel approach to lean combustion in a flat head engine is proposed by directly injecting gasoline fuel into the combustion chamber. The main advantage of the direct injection flat head (DIFH) engine over the conventional OHV GDI engine is its simplicity in design, low cost and, greater flexibility in placement of key engine performance hardware in the cylinder head. To first understand the behavior of the in-cylinder air motion, the air-flow structure developing within the combustion chamber was investigated using PIV techniques. The results show that squish is the dominant turbulence generating mean flow structure in the combustion chamber of the DIFH engine. Although the DIFH engine produced about 8 times more UHC emissions as compared to the conventional spark ignited OHV engines, it produced about 5 times less CO emissions as compared to the OHV engine and showed a 16% improvement in brake specific fuel consumption. The current combustion chamber has a dual chamber design exhibiting different combustion mechanisms in both the chambers, causing complex undesirable interactions between key engine performance parameters. Based on these fundamental studies a new combustion chamber design is presented for better performance.

Port Fuel Injection Strategies for a Lean Burn Gasoline Engine

Port Fuel Injection Strategies for a Lean Burn Gasoline Engine PDF Author: Tiago José Peres Lourenco Cardosa
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


ALTERNATIVE FUELS AND ADVANCED VEHICLE TECHNOLOGIES

ALTERNATIVE FUELS AND ADVANCED VEHICLE TECHNOLOGIES PDF Author: VENKATESWARLU. K.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8194685176
Category : Technology & Engineering
Languages : en
Pages : 200

Book Description
Primarily intended for the undergraduate students of Automobile, Mechanical, Electrical, Aerospace engineering, and postgraduate students of Thermal Engineering and Energy Systems, the book presents the topics as per the outcome-based education system. In addition to the coverage of various alternative fuels considered for IC engines, special focus is emphasized on research findings in the field of alternative fuels and fuel additives including nano-additives. The stress is also given towards the exclusive coverage of advanced engine technologies such as CRDI engines, MPFI engines, GDI, HCCI and advanced energy technologies such as Hybrid Electric Vehicles (HEVs), Plug-in Hybrid Electric Vehicles (PHEVs), Battery Electric Vehicles (BEVs), Fuel Cell Vehicles (FCVs), Solar Powered Vehicles. KEY FEATURES • A detailed discussion of the research findings in alternatives fuels for IC engines • 150+ Review questions • 200+ Multiple choice questions • PowerPoint slides for the instructors Target Audience • Undergraduate students of Automobile, Mechanical, Electrical, Aerospace engineering • Postgraduate students of Thermal engineering and Energy systems

Performance of a Lean-burn Natural Gas Engine Using a Double-pulse Partially-stratified Charge Ignition System

Performance of a Lean-burn Natural Gas Engine Using a Double-pulse Partially-stratified Charge Ignition System PDF Author: Arminta S. Chicka
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Developing a New Stratified-charge Combustion System with Fuel Injection for Reducing Exhaust Emissions in Small Farm and Industrial Engines

Developing a New Stratified-charge Combustion System with Fuel Injection for Reducing Exhaust Emissions in Small Farm and Industrial Engines PDF Author: Masataka Miyake
Publisher:
ISBN:
Category : Agricultural machinery
Languages : en
Pages : 16

Book Description


A Perspective on the Range of Gasoline Compression Ignition Combustion Strategies for High Engine Efficiency and Low NOx and Soot Emissions

A Perspective on the Range of Gasoline Compression Ignition Combustion Strategies for High Engine Efficiency and Low NOx and Soot Emissions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 21

Book Description
Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasoline has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities and challenges associated with the various fuel stratification levels.

Application of Clean Fuels in Combustion Engines

Application of Clean Fuels in Combustion Engines PDF Author: Gabriele Di Blasio
Publisher: Springer Nature
ISBN: 981168751X
Category : Technology & Engineering
Languages : en
Pages : 251

Book Description
This book discusses the impact of fuels characteristics and their effects on the combustion processes in internal combustion engines. It includes the analysis of a variety of biofuels (alcohol fuels and biodiesel) and biogases (natural gas, hydrogen, etc.), providing valuable information related to consequent effects on performance and emissions. The contents focus on recent results and current trends of fuel utilization in the transport sector. State-of-the-art of clean fuels application are also discussed. Thighs book will be of interest to those in academia and industry involved in fuels, IC engines, engine instrumentation, and environmental research.

STRATIFIED AND LEAN FUEL-AIR RATION ENGINES AND THEIR POSSIBILITIES

STRATIFIED AND LEAN FUEL-AIR RATION ENGINES AND THEIR POSSIBILITIES PDF Author: E.T. Vincent, Kanalakar Rac
Publisher:
ISBN:
Category :
Languages : en
Pages : 50

Book Description


Numerical Investigation of Pre-chamber Ignition in Internal Combustion Engines

Numerical Investigation of Pre-chamber Ignition in Internal Combustion Engines PDF Author: Quentin Malé (docteur en dynamique des fluides).)
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Homogeneous lean combustion is a great opportunity to reduce Internal Combustion Engine (ICE) emissions (both greenhouse gases and pollutants) if combined with responsible use. Unfortunately, burning lean mixtures and meeting the demands of ICEs is complicated by low reactions rates, extinction, instabilities and mild heat release. There is therefore a need for breakthrough technologies thwarting the adverse effects of lean combustion to leverage lean-burn strategies in ICEs. The Pre-Chamber Ignition (PCI) concept has demonstrated its capabilities to induce very high burning rates enabling ultra-lean premixed mixtures to be burnt efficiently. This is achieved through the creation of multiple highly turbulent jets of hot burnt gases issuing into the main chamber of the engine. However, the optimization of the size of the pre-chamber orifices is something very complex that is not yet clearly understood. Small holes must be used in order to generate enough turbulence in the main chamber, but these small holes can also inhibit the ignition of the main chamber because of too high jet cooling and/or speed. Therein lies the challenge of this research work: how to design the holes connecting pre- and main chambers to maximize burning rates without exceeding the ignition limit? To answer this question, multiple numerical tools were used: kinetically detailed Direct Numerical Simulation (DNS), Large Eddy Simulation (LES) and zero-dimensional modelling. DNS was used to build precise knowledge on jet ignition. Especially, it helped to understand how the jet injection speed and temperature govern ignition and revealed specific incipient flame structures. It also allowed to build models to predict the outcome of an ignition sequence. LES was used to study the whole PCI concept in a real engine. It allowed to analyse the flow entering and leaving the pre-chamber, to measure the cooling and quenching effects in the connecting ducts, and to analyse the ignition and combustion processes for both normal and abnormal combustion cases. Finally, a zero-dimensional model has been developed based on a multi-zone approach. It integrates key submodels to account for thermal effects in the ducts and to predict the outcome of the jet ignition attempts in the main chamber. Therefore, it provides a crucial tool to answer the research question by evaluating the result of multiple PCI designs in terms of main chamber ignition at a low computational cost.

Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Assessment of Fuel Economy Technologies for Light-Duty Vehicles PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309216389
Category : Science
Languages : en
Pages : 373

Book Description
Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.