Generalized Latent Variable Modeling

Generalized Latent Variable Modeling PDF Author: Anders Skrondal
Publisher: CRC Press
ISBN: 0203489438
Category : Mathematics
Languages : en
Pages : 523

Book Description
This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi

Longitudinal Data Analysis

Longitudinal Data Analysis PDF Author: Garrett Fitzmaurice
Publisher: CRC Press
ISBN: 142001157X
Category : Mathematics
Languages : en
Pages : 633

Book Description
Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory

Measurement Error in Longitudinal Data

Measurement Error in Longitudinal Data PDF Author: Alexandru Cernat
Publisher: Oxford University Press
ISBN: 0192603981
Category : Science
Languages : en
Pages : 304

Book Description
Longitudinal data is essential for understanding how the world around us changes. Most theories in the social sciences and elsewhere have a focus on change, be it of individuals, of countries, of organizations, or of systems, and this is reflected in the myriad of longitudinal data that are being collected using large panel surveys. This type of data collection has been made easier in the age of Big Data and with the rise of social media. Yet our measurements of the world are often imperfect, and longitudinal data is vulnerable to measurement errors which can lead to flawed and misleading conclusions. Measurement Error in Longitudinal Data tackles the important issue of how to investigate change in the context of imperfect data. It compiles the latest advances in estimating change in the presence of measurement error from several fields and covers the entire process, from the best ways of collecting longitudinal data, to statistical models to estimate change under uncertainty, to examples of researchers applying these methods in the real world. This book introduces the essential issues of longitudinal data collection, such as memory effects, panel conditioning (or mere measurement effects), the use of administrative data, and the collection of multi-mode longitudinal data. It also presents some of the most important models used in this area, including quasi-simplex models, latent growth models, latent Markov chains, and equivalence/DIF testing. Finally, the use of vignettes in the context of longitudinal data and estimation methods for multilevel models of change in the presence of measurement error are also discussed.

Longitudinal Research with Latent Variables

Longitudinal Research with Latent Variables PDF Author: Kees van Montfort
Publisher: Springer Science & Business Media
ISBN: 3642117600
Category : Mathematics
Languages : en
Pages : 311

Book Description
Since Charles Spearman published his seminal paper on factor analysis in 1904 and Karl Joresk ̈ og replaced the observed variables in an econometric structural equation model by latent factors in 1970, causal modelling by means of latent variables has become the standard in the social and behavioural sciences. Indeed, the central va- ables that social and behavioural theories deal with, can hardly ever be identi?ed as observed variables. Statistical modelling has to take account of measurement - rors and invalidities in the observed variables and so address the underlying latent variables. Moreover, during the past decades it has been widely agreed on that serious causal modelling should be based on longitudinal data. It is especially in the ?eld of longitudinal research and analysis, including panel research, that progress has been made in recent years. Many comprehensive panel data sets as, for example, on human development and voting behaviour have become available for analysis. The number of publications based on longitudinal data has increased immensely. Papers with causal claims based on cross-sectional data only experience rejection just for that reason.

Handbook of Latent Variable and Related Models

Handbook of Latent Variable and Related Models PDF Author:
Publisher: Elsevier
ISBN: 0080471269
Category : Mathematics
Languages : en
Pages : 458

Book Description
This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.

Mixed Effects Models for Complex Data

Mixed Effects Models for Complex Data PDF Author: Lang Wu
Publisher: CRC Press
ISBN: 9781420074086
Category : Mathematics
Languages : en
Pages : 431

Book Description
Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Latent Markov Models for Longitudinal Data

Latent Markov Models for Longitudinal Data PDF Author: Francesco Bartolucci
Publisher: CRC Press
ISBN: 1466583711
Category : Mathematics
Languages : en
Pages : 253

Book Description
Drawing on the authors' extensive research in the analysis of categorical longitudinal data, this book focuses on the formulation of latent Markov models and the practical use of these models. It demonstrates how to use the models in three types of analysis, with numerous examples illustrating how latent Markov models are used in economics, education, sociology, and other fields. The R and MATLAB routines used for the examples are available on the authors' website.

Loglinear Models with Latent Variables

Loglinear Models with Latent Variables PDF Author: Jacques A. Hagenaars
Publisher: SAGE
ISBN: 9780803943100
Category : Mathematics
Languages : en
Pages : 84

Book Description
In recent years the loglinear model has become the dominant form of categorical data analysis as researchers have expanded it into new directions. This book shows researchers the applications of one of these new developments - how uniting ordinary loglinear analysis and latent class analysis into a general loglinear model with latent variables can result in a modified LISREL approach. This modified LISREL model will enable researchers to analyze categorical data in the same way that they have been able to use LISREL to analyze continuous data.

Latent Variable and Latent Structure Models

Latent Variable and Latent Structure Models PDF Author: George A. Marcoulides
Publisher: Psychology Press
ISBN: 1135640661
Category : Psychology
Languages : en
Pages : 293

Book Description
This edited volume features cutting-edge topics from the leading researchers in the areas of latent variable modeling. Content highlights include coverage of approaches dealing with missing values, semi-parametric estimation, robust analysis, hierarchical data, factor scores, multi-group analysis, and model testing. New methodological topics are illustrated with real applications. The material presented brings together two traditions: psychometrics and structural equation modeling. Latent Variable and Latent Structure Models' thought-provoking chapters from the leading researchers in the area will help to stimulate ideas for further research for many years to come. This volume will be of interest to researchers and practitioners from a wide variety of disciplines, including biology, business, economics, education, medicine, psychology, sociology, and other social and behavioral sciences. A working knowledge of basic multivariate statistics and measurement theory is assumed.

ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers

ISS-2012 Proceedings Volume On Longitudinal Data Analysis Subject to Measurement Errors, Missing Values, and/or Outliers PDF Author: Brajendra C. Sutradhar
Publisher: Springer Science & Business Media
ISBN: 146146871X
Category : Mathematics
Languages : en
Pages : 224

Book Description
This proceedings volume contains nine selected papers that were presented in the International Symposium in Statistics, 2012 held at Memorial University from July 16 to 18. These nine papers cover three different areas for longitudinal data analysis, four dealing with longitudinal data subject to measurement errors, four on incomplete longitudinal data analysis, and the last one for inferences for longitudinal data subject to outliers. Unlike in the independence setup, the inferences in measurement errors, missing values, and/or outlier models, are not adequately discussed in the longitudinal setup. The papers in the present volume provide details on successes and further challenges in these three areas for longitudinal data analysis. This volume is the first outlet with current research in three important areas in the longitudinal setup. The nine papers presented in three parts clearly reveal the similarities and differences in inference techniques used for three different longitudinal setups. Because the research problems considered in this volume are encountered in many real life studies in biomedical, clinical, epidemiology, socioeconomic, econometrics, and engineering fields, the volume should be useful to the researchers including graduate students in these areas.