LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION* PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION* PDF full book. Access full book title LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION* by . Download full books in PDF and EPUB format.

LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION*

LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION* PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
A series of laser wake field accelerator experiments leading to electron energy exceeding 1 GeV are described. Theoretical concepts and experimental methods developed while conducting experiments using the 10 TW Ti:Sapphire laser at UCLA were implemented and transferred successfully to the 100 TW Callisto Laser System at the Jupiter Laser Facility at LLNL. To reach electron energies greater than 1 GeV with current laser systems, it is necessary to inject and trap electrons into the wake and to guide the laser for more than 1 cm of plasma. Using the 10 TW laser, the physics of self-guiding and the limitations in regards to pump depletion over cm-scale plasmas were demonstrated. Furthermore, a novel injection mechanism was explored which allows injection by ionization at conditions necessary for generating electron energies greater than a GeV. The 10 TW results were followed by self-guiding at the 100 TW scale over cm plasma lengths. The energy of the self-injected electrons, at 3 x 1018 cm−3 plasma density, was limited by dephasing to 720 MeV. Implementation of ionization injection allowed extending the acceleration well beyond a centimeter and 1.4 GeV electrons were measured.

LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION*

LASER WAKEFIELD ACCELERATION BEYOND 1 GeV USING IONIZATION INDUCED INJECTION* PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Book Description
A series of laser wake field accelerator experiments leading to electron energy exceeding 1 GeV are described. Theoretical concepts and experimental methods developed while conducting experiments using the 10 TW Ti:Sapphire laser at UCLA were implemented and transferred successfully to the 100 TW Callisto Laser System at the Jupiter Laser Facility at LLNL. To reach electron energies greater than 1 GeV with current laser systems, it is necessary to inject and trap electrons into the wake and to guide the laser for more than 1 cm of plasma. Using the 10 TW laser, the physics of self-guiding and the limitations in regards to pump depletion over cm-scale plasmas were demonstrated. Furthermore, a novel injection mechanism was explored which allows injection by ionization at conditions necessary for generating electron energies greater than a GeV. The 10 TW results were followed by self-guiding at the 100 TW scale over cm plasma lengths. The energy of the self-injected electrons, at 3 x 1018 cm−3 plasma density, was limited by dephasing to 720 MeV. Implementation of ionization injection allowed extending the acceleration well beyond a centimeter and 1.4 GeV electrons were measured.

Self-guided Laser Wakefield Acceleration Beyond 1 GeV Using Ionization-induced Injection

Self-guided Laser Wakefield Acceleration Beyond 1 GeV Using Ionization-induced Injection PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description


An Exploration on Electron Bunching of Ionization Induced Self-injection in Laser Wakefield Accelerators

An Exploration on Electron Bunching of Ionization Induced Self-injection in Laser Wakefield Accelerators PDF Author: Deyun Li (M.A.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 84

Book Description
Plasma-based wakefield accelerator is attractive for generating quasi-monoenergetic electron beams using the bubble regime. The bubble is formed by an intense driver, which propagates through the plasma and expels all electrons transversely, creating a cavity free of cold plasma electrons that trailing behind the driver. Self-injection is applicable in the bubble regime, which can produce bunches of quasi-monoenergetic electrons. (1) Such electron bunching structure can be diagnosed with coherent transition radiation and may be exploited to generate powerful high frequency radiation [16].This thesis focuses on electron bunching phenomenon through WAKE simulations and theoretical analysis. The simulation is completed under laser-driven field ionization wakefield acceleration. The code is improved by taking into consideration the high frequency property of laser driver in wakefield acceleration. Finer grid size is introduced to the ionization injection part of WAKE, for increasing simulation accuracy without much sacrifice of programming efficiency. Various conditions for optimal bunching in the trapped electrons are explored computationally and analytically.

Laser Wakefield Acceleration

Laser Wakefield Acceleration PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (such as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these "wake-fields", surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than 1/2 milliradian (i.e. 1/2 millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma "bubbles", which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use t ...

Ionization Injection Plasma Wakefield Acceleration

Ionization Injection Plasma Wakefield Acceleration PDF Author: Yunfeng Xi
Publisher:
ISBN:
Category :
Languages : en
Pages : 120

Book Description
Plasma-based acceleration, either driven by laser (LWFA) or driven by electron beam (PWFA) has the potential of accelerating electrons to GeV in a few cen- timeters. This allows construction of table-top accelerator which can be applied to build light source such as free electron laser (FEL) or high energy particle collider. The driver bunch loses energy to plasma when driving a wake. The following wit- ness bunch injected at correct phase will be accelerated. Here we report a novel injection scheme, laser-ionization injection where the witness bunch is formed by laser-ionizing higher-threshold gas such as He. Simulation and numerical calcula- tion is presented to evaluate the beam quality, the beam emittance is estimated to be 10 8 mrad. Experimental key issues such as timing synchronization of laser pulse and electron bunch and eliminate "dark current" are taken care of before the plasma acceleration experiment is carried out. Two beams are synchronized to 100-fs level via plasma radiation observation and Electro-Optic Sampling (EOS). "Dark current" is reduced to trivial level by tuning plasma density and driver bunch configuration. We observed 1 GeV gain of witness bunch with 5% energy spread.

Laser-Driven Particle Acceleration Towards Radiobiology and Medicine

Laser-Driven Particle Acceleration Towards Radiobiology and Medicine PDF Author: Antonio Giulietti
Publisher: Springer
ISBN: 3319315633
Category : Science
Languages : en
Pages : 326

Book Description
This book deals with the new method of laser-driven acceleration for application to radiation biophysics and medicine. It provides multidisciplinary contributions from world leading scientist in order to assess the state of the art of innovative tools for radiation biology research and medical applications of ionizing radiation. The book contains insightful contributions on highly topical aspects of spatio-temporal radiation biophysics, evolving over several orders of magnitude, typically from femtosecond and sub-micrometer scales. Particular attention is devoted to the emerging technology of laser-driven particle accelerators and their application to spatio-temporal radiation biology and medical physics, customization of non-conventional and selective radiotherapy and optimized radioprotection protocols.

Phase Space Dynamics in Plasma Based Wakefield Acceleration

Phase Space Dynamics in Plasma Based Wakefield Acceleration PDF Author: Xinlu Xu
Publisher: Springer Nature
ISBN: 9811523819
Category : Science
Languages : en
Pages : 138

Book Description
This book explores several key issues in beam phase space dynamics in plasma-based wakefield accelerators. It reveals the phase space dynamics of ionization-based injection methods by identifying two key phase mixing processes. Subsequently, the book proposes a two-color laser ionization injection scheme for generating high-quality beams, and assesses it using particle-in-cell (PIC) simulations. To eliminate emittance growth when the beam propagates between plasma accelerators and traditional accelerator components, a method using longitudinally tailored plasma structures as phase space matching components is proposed. Based on the aspects above, a preliminary design study on X-ray free-electron lasers driven by plasma accelerators is presented. Lastly, an important type of numerical noise—the numerical Cherenkov instabilities in particle-in-cell codes—is systematically studied.

Progress in Ultrafast Intense Laser Science VIII

Progress in Ultrafast Intense Laser Science VIII PDF Author: Kaoru Yamanouchi
Publisher: Springer Science & Business Media
ISBN: 3642287263
Category : Science
Languages : en
Pages : 208

Book Description
The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.

Challenges And Goals For Accelerators In The Xxi Century

Challenges And Goals For Accelerators In The Xxi Century PDF Author: Stephen Myers
Publisher: World Scientific
ISBN: 9814436410
Category : Science
Languages : en
Pages : 856

Book Description
The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades.

Laser Wakefield and Direct Acceleration in the Plasma Bubble Regime

Laser Wakefield and Direct Acceleration in the Plasma Bubble Regime PDF Author: Zhang, Xi (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 220

Book Description
Laser wakefield acceleration (LWFA) and direct laser acceleration (DLA) are two different kinds of laser plasma electron acceleration mechanisms. LWFA relies on the laser-driven plasma wave to accelerate electrons. The interaction of ultra-short ultra-intensive laser pulses with underdense plasma leads the LWFA into a highly nonlinear regime (“plasma bubble regime”) that attracts particular interest nowadays. DLA accelerates electrons by laser electromagnetic wave in the ion channel or the plasma bubble through the Betatron resonance. This dissertation presents a hybrid laser plasma electron acceleration mechanism. We investigate its features through particle-in-cell (PIC) simulations and the single particle model. The hybrid laser plasma electron acceleration is the merging concept between the LWFA and the DLA, so called laser wakefield and direct acceleration (LWDA). The requirements of the initial conditions of the electron to undergo the LWDA are determined. The electron must have a large initial transverse energy. Two electron injection mechanisms that are suitable for the LWDA, density bump injection and ionization induced injection, are studied in detail. The features of electron beam phase space and electron dynamics are explored. Electron beam phase space appears several unique features such as spatially separated two groups, the correlation between the transverse energy and the relativistic factor and the double-peak spectrum. Electrons are synergistically accelerated by the wakefield as well as by the laser electromagnetic field in the laser-driven plasma bubble. LWDA are also investigated in the moderate power regime (10 TW) in regarding the effects of laser color and polarization. It is found that the frequency upshift laser pulse has better performance on avoiding time-jitter of electron energy spectra, electron final energy and electron charge yield. Some basic characters that related to the LWDA such as the effects of the subluminal laser wave, the effects of the longitudinal accelerating field, the electron beam emittance, the electron charge yield and potentially applications as radiation source are discussed.