Large Scale Hierarchical Classification: State of the Art PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Large Scale Hierarchical Classification: State of the Art PDF full book. Access full book title Large Scale Hierarchical Classification: State of the Art by Azad Naik. Download full books in PDF and EPUB format.

Large Scale Hierarchical Classification: State of the Art

Large Scale Hierarchical Classification: State of the Art PDF Author: Azad Naik
Publisher: Springer
ISBN: 303001620X
Category : Computers
Languages : en
Pages : 104

Book Description
This SpringerBrief covers the technical material related to large scale hierarchical classification (LSHC). HC is an important machine learning problem that has been researched and explored extensively in the past few years. In this book, the authors provide a comprehensive overview of various state-of-the-art existing methods and algorithms that were developed to solve the HC problem in large scale domains. Several challenges faced by LSHC is discussed in detail such as: 1. High imbalance between classes at different levels of the hierarchy 2. Incorporating relationships during model learning leads to optimization issues 3. Feature selection 4. Scalability due to large number of examples, features and classes 5. Hierarchical inconsistencies 6. Error propagation due to multiple decisions involved in making predictions for top-down methods The brief also demonstrates how multiple hierarchies can be leveraged for improving the HC performance using different Multi-Task Learning (MTL) frameworks. The purpose of this book is two-fold: 1. Help novice researchers/beginners to get up to speed by providing a comprehensive overview of several existing techniques. 2. Provide several research directions that have not yet been explored extensively to advance the research boundaries in HC. New approaches discussed in this book include detailed information corresponding to the hierarchical inconsistencies, multi-task learning and feature selection for HC. Its results are highly competitive with the state-of-the-art approaches in the literature.

Large Scale Hierarchical Classification: State of the Art

Large Scale Hierarchical Classification: State of the Art PDF Author: Azad Naik
Publisher: Springer
ISBN: 303001620X
Category : Computers
Languages : en
Pages : 104

Book Description
This SpringerBrief covers the technical material related to large scale hierarchical classification (LSHC). HC is an important machine learning problem that has been researched and explored extensively in the past few years. In this book, the authors provide a comprehensive overview of various state-of-the-art existing methods and algorithms that were developed to solve the HC problem in large scale domains. Several challenges faced by LSHC is discussed in detail such as: 1. High imbalance between classes at different levels of the hierarchy 2. Incorporating relationships during model learning leads to optimization issues 3. Feature selection 4. Scalability due to large number of examples, features and classes 5. Hierarchical inconsistencies 6. Error propagation due to multiple decisions involved in making predictions for top-down methods The brief also demonstrates how multiple hierarchies can be leveraged for improving the HC performance using different Multi-Task Learning (MTL) frameworks. The purpose of this book is two-fold: 1. Help novice researchers/beginners to get up to speed by providing a comprehensive overview of several existing techniques. 2. Provide several research directions that have not yet been explored extensively to advance the research boundaries in HC. New approaches discussed in this book include detailed information corresponding to the hierarchical inconsistencies, multi-task learning and feature selection for HC. Its results are highly competitive with the state-of-the-art approaches in the literature.

Large Scale Hierarchical Classification

Large Scale Hierarchical Classification PDF Author: Azad Naik
Publisher:
ISBN: 9783030016210
Category : Supervised learning (Machine learning)
Languages : en
Pages : 93

Book Description
This SpringerBrief covers the technical material related to large scale hierarchical classification (LSHC). HC is an important machine learning problem that has been researched and explored extensively in the past few years. In this book, the authors provide a comprehensive overview of various state-of-the-art existing methods and algorithms that were developed to solve the HC problem in large scale domains. Several challenges faced by LSHC is discussed in detail such as: 1. High imbalance between classes at different levels of the hierarchy; 2. Incorporating relationships during model learning leads to optimization issues; 3. Feature selection; 4. Scalability due to large number of examples, features and classes; 5. Hierarchical inconsistencies; 6. Error propagation due to multiple decisions involved in making predictions for top-down methods. The brief also demonstrates how multiple hierarchies can be leveraged for improving the HC performance using different Multi-Task Learning (MTL) frameworks.

Advances on Intelligent Informatics and Computing

Advances on Intelligent Informatics and Computing PDF Author: Faisal Saeed
Publisher: Springer Nature
ISBN: 3030987418
Category : Computers
Languages : en
Pages : 793

Book Description
This book presents emerging trends in intelligent computing and informatics. This book presents the papers included in the proceedings of the 6th International Conference of Reliable Information and Communication Technology 2021 (IRICT 2021) that was held virtually, on Dec. 22-23, 2021. The main theme of the book is “Advances on Intelligent Informatics and Computing”. A total of 87 papers were submitted to the conference, but only 66 papers were accepted and published in this book. The book presents several hot research topics which include health informatics, artificial intelligence, soft computing, data science, big data analytics, Internet of Things (IoT), intelligent communication systems, cybersecurity, and information systems.

Neural Information Processing

Neural Information Processing PDF Author: Tingwen Huang
Publisher: Springer
ISBN: 3642344879
Category : Computers
Languages : en
Pages : 740

Book Description
The five volume set LNCS 7663, LNCS 7664, LNCS 7665, LNCS 7666 and LNCS 7667 constitutes the proceedings of the 19th International Conference on Neural Information Processing, ICONIP 2012, held in Doha, Qatar, in November 2012. The 423 regular session papers presented were carefully reviewed and selected from numerous submissions. These papers cover all major topics of theoretical research, empirical study and applications of neural information processing research. The 5 volumes represent 5 topical sections containing articles on theoretical analysis, neural modeling, algorithms, applications, as well as simulation and synthesis.

Advances in Multimedia Information Processing -- PCM 2015

Advances in Multimedia Information Processing -- PCM 2015 PDF Author: Yo-Sung Ho
Publisher: Springer
ISBN: 3319240781
Category : Computers
Languages : en
Pages : 693

Book Description
The two-volume proceedings LNCS 9314 and 9315, constitute the proceedings of the 16th Pacific-Rim Conference on Multimedia, PCM 2015, held in Gwangju, South Korea, in September 2015. The total of 138 full and 32 short papers presented in these proceedings was carefully reviewed and selected from 224 submissions. The papers were organized in topical sections named: image and audio processing; multimedia content analysis; multimedia applications and services; video coding and processing; multimedia representation learning; visual understanding and recognition on big data; coding and reconstruction of multimedia data with spatial-temporal information; 3D image/video processing and applications; video/image quality assessment and processing; social media computing; human action recognition in social robotics and video surveillance; recent advances in image/video processing; new media representation and transmission technologies for emerging UHD services.

Analysis of Images, Social Networks and Texts

Analysis of Images, Social Networks and Texts PDF Author: Wil M. P. van der Aalst
Publisher: Springer Nature
ISBN: 3030373347
Category : Computers
Languages : en
Pages : 441

Book Description
This book constitutes the post-conference proceedings of the 8th International Conference on Analysis of Images, Social Networks and Texts, AIST 2019, held in Kazan, Russia, in July 2019. The 27 full and 8 short papers were carefully reviewed and selected from 134 submissions (of which 21 papers were automatically rejected without being reviewed). The papers are organized in topical sections on general topics of data analysis; natural language processing; social network analysis; analysis of images and video; optimization problems on graphs and network structures; and analysis of dynamic behavior through event data.

Advances in Information Retrieval

Advances in Information Retrieval PDF Author: Paul Clough
Publisher: Springer
ISBN: 364220161X
Category : Computers
Languages : en
Pages : 821

Book Description
This book constitutes the refereed proceedings of the 33rd annual European Conference on Information Retrieval Research, ECIR 2011, held in Dublin, Ireland, in April 2010. The 45 revised full papers presented together with 24 poster papers, 17 short papers, and 6 tool demonstrations were carefully reviewed and selected from 223 full research paper submissions and 64 poster/demo submissions. The papers are organized in topical sections on text categorization, recommender systems, Web IR, IR evaluation, IR for Social Networks, cross-language IR, IR theory, multimedia IR, IR applications, interactive IR, and question answering /NLP.

Machine Learning and Knowledge Discovery in Databases

Machine Learning and Knowledge Discovery in Databases PDF Author: Annalisa Appice
Publisher: Springer
ISBN: 3319235281
Category : Computers
Languages : en
Pages : 760

Book Description
The three volume set LNAI 9284, 9285, and 9286 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2015, held in Porto, Portugal, in September 2015. The 131 papers presented in these proceedings were carefully reviewed and selected from a total of 483 submissions. These include 89 research papers, 11 industrial papers, 14 nectar papers, and 17 demo papers. They were organized in topical sections named: classification, regression and supervised learning; clustering and unsupervised learning; data preprocessing; data streams and online learning; deep learning; distance and metric learning; large scale learning and big data; matrix and tensor analysis; pattern and sequence mining; preference learning and label ranking; probabilistic, statistical, and graphical approaches; rich data; and social and graphs. Part III is structured in industrial track, nectar track, and demo track.

Deep Learning for Computer Vision

Deep Learning for Computer Vision PDF Author: Jason Brownlee
Publisher: Machine Learning Mastery
ISBN:
Category : Computers
Languages : en
Pages : 564

Book Description
Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

ECAI 2023

ECAI 2023 PDF Author: K. Gal
Publisher: IOS Press
ISBN: 164368437X
Category : Computers
Languages : en
Pages : 3328

Book Description
Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrate innovative applications and uses of advanced AI technology. ECAI 2023 received 1896 submissions – a record number – of which 1691 were retained for review, ultimately resulting in an acceptance rate of 23%. The 390 papers included here, cover topics including machine learning, natural language processing, multi agent systems, and vision and knowledge representation and reasoning. PAIS 2023 received 17 submissions, of which 10 were accepted after a rigorous review process. Those 10 papers cover topics ranging from fostering better working environments, behavior modeling and citizen science to large language models and neuro-symbolic applications, and are also included here. Presenting a comprehensive overview of current research and developments in AI, the book will be of interest to all those working in the field.