Author: William A. Imbriale
Publisher: John Wiley & Sons
ISBN: 0471726192
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
An important historical look at the space program's evolvingtelecommunications systems Large Antennas of the Deep Space Network traces the development ofthe antennas of NASA's Deep Space Network (DSN) from the network'sinception in 1958 to the present. It details the evolution of thelarge parabolic dish antennas, from the initial 26-m operation atL-band (960 MHz) through the current Ka-band (32 GHz) systems.Primarily used for telecommunications, these antennas also supportradar and radio astronomy observations in the exploration of thesolar system and the universe. In addition, the author also offersthorough treatment of the analytical and measurement techniquesused in design and performance assessment. Large Antennas of the Deep Space Network represents a vitaladdition to the literature in that it includes NASA-funded researchthat significantly impacts on deep space telecommunications. Partof the prestigious JPL Deep Space Communications and NavigationSeries, it captures fundamental principles and practices developedduring decades of deep space exploration, providing informationthat will enable antenna professionals to replicate radiofrequencies and optics designs. Designed as an introduction for students in the field as well as areference for advanced practitioners, the text assumes a basicfamiliarity with engineering and mathematical concepts andtechnical terms. The Deep Space Communications and Navigation Series is authored byscientists and engineers with extensive experience in astronautics,communications, and related fields. It lays the foundation forinnovation in the areas of deep space navigation and communicationsby disseminating state-of-the-art knowledge in key technologies.
Large Antennas of the Deep Space Network
Author: William A. Imbriale
Publisher: John Wiley & Sons
ISBN: 0471726192
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
An important historical look at the space program's evolvingtelecommunications systems Large Antennas of the Deep Space Network traces the development ofthe antennas of NASA's Deep Space Network (DSN) from the network'sinception in 1958 to the present. It details the evolution of thelarge parabolic dish antennas, from the initial 26-m operation atL-band (960 MHz) through the current Ka-band (32 GHz) systems.Primarily used for telecommunications, these antennas also supportradar and radio astronomy observations in the exploration of thesolar system and the universe. In addition, the author also offersthorough treatment of the analytical and measurement techniquesused in design and performance assessment. Large Antennas of the Deep Space Network represents a vitaladdition to the literature in that it includes NASA-funded researchthat significantly impacts on deep space telecommunications. Partof the prestigious JPL Deep Space Communications and NavigationSeries, it captures fundamental principles and practices developedduring decades of deep space exploration, providing informationthat will enable antenna professionals to replicate radiofrequencies and optics designs. Designed as an introduction for students in the field as well as areference for advanced practitioners, the text assumes a basicfamiliarity with engineering and mathematical concepts andtechnical terms. The Deep Space Communications and Navigation Series is authored byscientists and engineers with extensive experience in astronautics,communications, and related fields. It lays the foundation forinnovation in the areas of deep space navigation and communicationsby disseminating state-of-the-art knowledge in key technologies.
Publisher: John Wiley & Sons
ISBN: 0471726192
Category : Technology & Engineering
Languages : en
Pages : 320
Book Description
An important historical look at the space program's evolvingtelecommunications systems Large Antennas of the Deep Space Network traces the development ofthe antennas of NASA's Deep Space Network (DSN) from the network'sinception in 1958 to the present. It details the evolution of thelarge parabolic dish antennas, from the initial 26-m operation atL-band (960 MHz) through the current Ka-band (32 GHz) systems.Primarily used for telecommunications, these antennas also supportradar and radio astronomy observations in the exploration of thesolar system and the universe. In addition, the author also offersthorough treatment of the analytical and measurement techniquesused in design and performance assessment. Large Antennas of the Deep Space Network represents a vitaladdition to the literature in that it includes NASA-funded researchthat significantly impacts on deep space telecommunications. Partof the prestigious JPL Deep Space Communications and NavigationSeries, it captures fundamental principles and practices developedduring decades of deep space exploration, providing informationthat will enable antenna professionals to replicate radiofrequencies and optics designs. Designed as an introduction for students in the field as well as areference for advanced practitioners, the text assumes a basicfamiliarity with engineering and mathematical concepts andtechnical terms. The Deep Space Communications and Navigation Series is authored byscientists and engineers with extensive experience in astronautics,communications, and related fields. It lays the foundation forinnovation in the areas of deep space navigation and communicationsby disseminating state-of-the-art knowledge in key technologies.
Large Antennas of the Deep Space Network
Author: William A. Imbriale
Publisher: John Wiley & Sons
ISBN: 0471445371
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
An important historical look at the space program's evolving telecommunications systems Large Antennas of the Deep Space Network traces the development of the antennas of NASA's Deep Space Network (DSN) from the network's inception in 1958 to the present. It details the evolution of the large parabolic dish antennas, from the initial 26-m operation at L-band (960 MHz) through the current Ka-band (32 GHz) systems. Primarily used for telecommunications, these antennas also support radar and radio astronomy observations in the exploration of the solar system and the universe. In addition, the author also offers thorough treatment of the analytical and measurement techniques used in design and performance assessment. Large Antennas of the Deep Space Network represents a vital addition to the literature in that it includes NASA-funded research that significantly impacts on deep space telecommunications. Part of the prestigious JPL Deep Space Communications and Navigation Series, it captures fundamental principles and practices developed during decades of deep space exploration, providing information that will enable antenna professionals to replicate radio frequencies and optics designs. Designed as an introduction for students in the field as well as a reference for advanced practitioners, the text assumes a basic familiarity with engineering and mathematical concepts and technical terms. The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
Publisher: John Wiley & Sons
ISBN: 0471445371
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
An important historical look at the space program's evolving telecommunications systems Large Antennas of the Deep Space Network traces the development of the antennas of NASA's Deep Space Network (DSN) from the network's inception in 1958 to the present. It details the evolution of the large parabolic dish antennas, from the initial 26-m operation at L-band (960 MHz) through the current Ka-band (32 GHz) systems. Primarily used for telecommunications, these antennas also support radar and radio astronomy observations in the exploration of the solar system and the universe. In addition, the author also offers thorough treatment of the analytical and measurement techniques used in design and performance assessment. Large Antennas of the Deep Space Network represents a vital addition to the literature in that it includes NASA-funded research that significantly impacts on deep space telecommunications. Part of the prestigious JPL Deep Space Communications and Navigation Series, it captures fundamental principles and practices developed during decades of deep space exploration, providing information that will enable antenna professionals to replicate radio frequencies and optics designs. Designed as an introduction for students in the field as well as a reference for advanced practitioners, the text assumes a basic familiarity with engineering and mathematical concepts and technical terms. The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
Big Dish
Author: Douglas J. Mudgway
Publisher:
ISBN: 9780813028057
Category : Science
Languages : en
Pages : 253
Book Description
International politics, intrigue, and amazing scientific feats create the story behind NASA’s quest to communicate in deep space The astonishing success of the United States' quest to explore space depends upon NASA's visionary Deep Space Network (DSN), a communications grid that provides the backbone of antennas and satellite links that track and control spacecraft launched from Earth. Douglas J. Mudgway participated in development and operation of the DSN from its infancy in the 1960s to its maturity in the 1990s, and he brings his practical experience to this story of the challenges, successes, and frequent failures that beset the dedicated engineers who turned the initial vision into reality. Set against the Cold War race for technical supremacy in space, this well-illustrated book offers an unprecedented inside view of the antennas that have been indispensable in missions to the farthest reaches of our solar system. These gigantic instruments--about one acre in surface area and weighing over 6 million pounds--are among the largest of their kind ever constructed. Located at remote sites in California, Spain, and Australia, they have provided an international community of scientists with a deep space connection to the planets that has enabled unmanned spacecraft to return a wealth of data to Earth. Radio astronomers, too, have engaged these instruments to probe the mysteries of the cosmos. Big Dish describes how these exquisite instruments work, how they came into being, and the problems encountered in their construction and in enhancing their performance over time to meet the demands of ever more ambitious planetary missions. It discusses the complexities of deep space communications in accessible language and introduces readers to the human story of perseverance and ingenuity that has maintained these great antennas for more than forty years. This is also a behind-the-scenes look at NASA's Jet Propulsion Laboratory in California, where political challenges, personal intrigue, and feats of brilliant engineering all contributed to the United States' preeminence in deep space exploration.
Publisher:
ISBN: 9780813028057
Category : Science
Languages : en
Pages : 253
Book Description
International politics, intrigue, and amazing scientific feats create the story behind NASA’s quest to communicate in deep space The astonishing success of the United States' quest to explore space depends upon NASA's visionary Deep Space Network (DSN), a communications grid that provides the backbone of antennas and satellite links that track and control spacecraft launched from Earth. Douglas J. Mudgway participated in development and operation of the DSN from its infancy in the 1960s to its maturity in the 1990s, and he brings his practical experience to this story of the challenges, successes, and frequent failures that beset the dedicated engineers who turned the initial vision into reality. Set against the Cold War race for technical supremacy in space, this well-illustrated book offers an unprecedented inside view of the antennas that have been indispensable in missions to the farthest reaches of our solar system. These gigantic instruments--about one acre in surface area and weighing over 6 million pounds--are among the largest of their kind ever constructed. Located at remote sites in California, Spain, and Australia, they have provided an international community of scientists with a deep space connection to the planets that has enabled unmanned spacecraft to return a wealth of data to Earth. Radio astronomers, too, have engaged these instruments to probe the mysteries of the cosmos. Big Dish describes how these exquisite instruments work, how they came into being, and the problems encountered in their construction and in enhancing their performance over time to meet the demands of ever more ambitious planetary missions. It discusses the complexities of deep space communications in accessible language and introduces readers to the human story of perseverance and ingenuity that has maintained these great antennas for more than forty years. This is also a behind-the-scenes look at NASA's Jet Propulsion Laboratory in California, where political challenges, personal intrigue, and feats of brilliant engineering all contributed to the United States' preeminence in deep space exploration.
Antenna Arraying Techniques in the Deep Space Network
Author: David H. Rogstad
Publisher: John Wiley & Sons
ISBN: 0471721301
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
An introduction to antenna Arraying in the Deep Space network Antenna arraying is the combining of the output from several antennas in order to improve the signal-to-noise ratio (SNR) of the received signal. Now implemented at the Goldstone Complex and other Deep Space Network (DSN) overseas facilities, antenna arraying provides flexible use of multiple antennas to increase data rates and has enabled NASA's DSN to extend the missions of some spacecraft beyond their planned lifetimes. Antenna Arraying Techniques in the Deep Space Network introduces the development and use of antenna arraying as it is implemented in the DSN. Drawing on the work of scientists at JPL, this timely volume summarizes the development of antenna arraying and its historical background; describes key concepts and techniques; analyzes and compares several methods of arraying; discusses several correlation techniques used for obtaining the combined weights; presents the results of several arraying experiments; and suggests directions for future work. An important contribution to the scientific literature, Antenna Arraying Techniques in the Deep Space Network * Was commissioned by the JPL Deep Space Communications and Navigation Systems (DESCANSO) Center of Excellence * Highlights many NASA-funded technical contributions pertaining to deep space communications systems * Is a part of the prestigious JPL Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
Publisher: John Wiley & Sons
ISBN: 0471721301
Category : Technology & Engineering
Languages : en
Pages : 184
Book Description
An introduction to antenna Arraying in the Deep Space network Antenna arraying is the combining of the output from several antennas in order to improve the signal-to-noise ratio (SNR) of the received signal. Now implemented at the Goldstone Complex and other Deep Space Network (DSN) overseas facilities, antenna arraying provides flexible use of multiple antennas to increase data rates and has enabled NASA's DSN to extend the missions of some spacecraft beyond their planned lifetimes. Antenna Arraying Techniques in the Deep Space Network introduces the development and use of antenna arraying as it is implemented in the DSN. Drawing on the work of scientists at JPL, this timely volume summarizes the development of antenna arraying and its historical background; describes key concepts and techniques; analyzes and compares several methods of arraying; discusses several correlation techniques used for obtaining the combined weights; presents the results of several arraying experiments; and suggests directions for future work. An important contribution to the scientific literature, Antenna Arraying Techniques in the Deep Space Network * Was commissioned by the JPL Deep Space Communications and Navigation Systems (DESCANSO) Center of Excellence * Highlights many NASA-funded technical contributions pertaining to deep space communications systems * Is a part of the prestigious JPL Deep Space Communications and Navigation Series The Deep Space Communications and Navigation Series is authored by scientists and engineers with extensive experience in astronautics, communications, and related fields. It lays the foundation for innovation in the areas of deep space navigation and communications by disseminating state-of-the-art knowledge in key technologies.
Deep Space Telecommunications Systems Engineering
Author: Joseph H. Yuen
Publisher: Springer Science & Business Media
ISBN: 1475749236
Category : Technology & Engineering
Languages : en
Pages : 615
Book Description
The challenge of communication in planetary exploration has been unusual. The guidance and control of spacecraft depend on reliable communication. Scientific data returned to earth are irreplaceable, or replaceable only at the cost of another mission. In deep space, communications propagation is good, relative to terrestrial communications, and there is an opportunity to press toward the mathematical limit of microwave communication. Yet the limits must be approached warily, with reliability as well as channel capacity in mind. Further, the effects of small changes in the earth's atmosphere and the interplanetary plasma have small but important effects on propagation time and hence on the measurement of distance. Advances are almost incredible. Communication capability measured in 18 bits per second at a given range rose by a factor of 10 in the 19 years from Explorer I of 1958 to Voyager of 1977. This improvement was attained through ingenious design based on the sort of penetrating analysis set forth in this book by engineers who took part in a highly detailed and amazingly successful pro gram. Careful observation and analysis have told us much about limitations on the accurate measurement of distance. It is not easy to get busy people to tell others clearly and in detail how they have solved important problems. Joseph H. Yuen and the other contribu tors to this book are to be commended for the time and care they have devoted to explicating one vital aspect of a great adventure of mankind.
Publisher: Springer Science & Business Media
ISBN: 1475749236
Category : Technology & Engineering
Languages : en
Pages : 615
Book Description
The challenge of communication in planetary exploration has been unusual. The guidance and control of spacecraft depend on reliable communication. Scientific data returned to earth are irreplaceable, or replaceable only at the cost of another mission. In deep space, communications propagation is good, relative to terrestrial communications, and there is an opportunity to press toward the mathematical limit of microwave communication. Yet the limits must be approached warily, with reliability as well as channel capacity in mind. Further, the effects of small changes in the earth's atmosphere and the interplanetary plasma have small but important effects on propagation time and hence on the measurement of distance. Advances are almost incredible. Communication capability measured in 18 bits per second at a given range rose by a factor of 10 in the 19 years from Explorer I of 1958 to Voyager of 1977. This improvement was attained through ingenious design based on the sort of penetrating analysis set forth in this book by engineers who took part in a highly detailed and amazingly successful pro gram. Careful observation and analysis have told us much about limitations on the accurate measurement of distance. It is not easy to get busy people to tell others clearly and in detail how they have solved important problems. Joseph H. Yuen and the other contribu tors to this book are to be commended for the time and care they have devoted to explicating one vital aspect of a great adventure of mankind.
Radiometric Tracking Techniques for Deep-Space Navigation
Author: Catherine L. Thornton
Publisher: John Wiley & Sons
ISBN: 0471726168
Category : Technology & Engineering
Languages : en
Pages : 99
Book Description
Radiometric Tracking Techniques for Deep-Space Navigation focuses on a broad array of technologies and concepts developed over the last four decades to support radio navigation on interplanetary spacecraft. In addition to an overview of Earth-based radio navigation techniques, the book includes a simplified conceptual presentation of each radiometric measurement type, its information content, and the expected measeurement accuracy. The methods described for both aquiring and calibrating radiometric measurements also provide a robust system to support guidance and navigation for future robotic space exploration.
Publisher: John Wiley & Sons
ISBN: 0471726168
Category : Technology & Engineering
Languages : en
Pages : 99
Book Description
Radiometric Tracking Techniques for Deep-Space Navigation focuses on a broad array of technologies and concepts developed over the last four decades to support radio navigation on interplanetary spacecraft. In addition to an overview of Earth-based radio navigation techniques, the book includes a simplified conceptual presentation of each radiometric measurement type, its information content, and the expected measeurement accuracy. The methods described for both aquiring and calibrating radiometric measurements also provide a robust system to support guidance and navigation for future robotic space exploration.
CubeSat Antenna Design
Author: Nacer Chahat
Publisher: John Wiley & Sons
ISBN: 111969258X
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL) CubeSats—nanosatellites built to standard dimensions of 10cm x 10 cm x cm—are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA’s Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective. This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume: Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication Helps readers learn how to develop antennas for future CubeSat missions Provides key information on the effect of space environment on antennas to inform design steps Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.
Publisher: John Wiley & Sons
ISBN: 111969258X
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
Presents an overview of CubeSat antennas designed at the Jet Propulsion Laboratory (JPL) CubeSats—nanosatellites built to standard dimensions of 10cm x 10 cm x cm—are making space-based Earth science observation and interplanetary space science affordable, accessible, and rapidly deployable for institutions such as universities and smaller space agencies around the world. CubeSat Antenna Design is an up-to-date overview of CubeSat antennas designed at NASA’s Jet Propulsion Laboratory (JPL), covering the systems engineering knowledge required to design these antennas from a radio frequency and mechanical perspective. This authoritative volume features contributions by leading experts in the field, providing insights on mission-critical design requirements for state-of-the-art CubeSat antennas and discussing their development, capabilities, and applications. The text begins with a brief introduction to CubeSats, followed by a detailed survey of low-gain, medium-gain, and high-gain antennas. Subsequent chapters cover topics including the telecommunication subsystem of Mars Cube One (MarCO), the enabling technology of Radar in a CubeSat (RainCube), the development of a one-meter mesh reflector for telecommunication at X- and Ka-band for deep space missions, and the design of multiple metasurface antennas. Written to help antenna engineers to enable new CubeSate NASA missions, this volume: Describes the selection of high-gain CubeSat antennas to address specific mission requirements and constraints for instruments or telecommunication Helps readers learn how to develop antennas for future CubeSat missions Provides key information on the effect of space environment on antennas to inform design steps Covers patch and patch array antennas, deployable reflectarray antennas, deployable mesh reflector, inflatable antennas, and metasurface antennas CubeSat Antenna Design is an important resource for antenna/microwave engineers, aerospace systems engineers, and advanced graduate and postdoctoral students wanting to learn how to design and fabricate their own antennas to address clear mission requirements.
Spaceborne Antennas for Planetary Exploration
Author: William A. Imbriale
Publisher: John Wiley & Sons
ISBN: 0470052775
Category : Technology & Engineering
Languages : en
Pages : 594
Book Description
JPL spacecraft antennas-from the first Explorer satellite in 1958 to current R & D Spaceborne Antennas for Planetary Exploration covers the development of Jet Propulsion Laboratory (JPL) spacecraft antennas, beginning with the first Explorer satellite in 1958 through current research and development activities aimed at future missions. Readers follow the evolution of all the new designs and technological innovations that were developed to meet the growing demands of deep space exploration. The book focuses on the radio frequency design and performance of antennas, but covers environmental and mechanical considerations as well. There is additionally a thorough treatment of all the analytical and measurement techniques used in design and performance assessment. Each chapter is written by one or more leading experts in the field of antenna technology. The presentation of the history and technology of spaceborne antennas is aided by several features: * Photographs and drawings of JPL spacecraft * Illustrations to help readers visualize concepts and designs * Tables highlighting and comparing the performance of the antennas * Bibliographies at the end of each chapter leading to a variety of primary and secondary source material This book complements Large Antennas of the Deep Space Network (Wiley 2002), which surveys the ground antennas covered in support of spacecraft. Together, these two books completely cover all JPL antenna technology, in keeping with the JPL Deep Space Communications and Navigation Series mission to capture and present the many innovations in deep space telecommunications over the past decades. This book is a fascinating and informative read for all individuals working in or interested in deep space telecommunications.
Publisher: John Wiley & Sons
ISBN: 0470052775
Category : Technology & Engineering
Languages : en
Pages : 594
Book Description
JPL spacecraft antennas-from the first Explorer satellite in 1958 to current R & D Spaceborne Antennas for Planetary Exploration covers the development of Jet Propulsion Laboratory (JPL) spacecraft antennas, beginning with the first Explorer satellite in 1958 through current research and development activities aimed at future missions. Readers follow the evolution of all the new designs and technological innovations that were developed to meet the growing demands of deep space exploration. The book focuses on the radio frequency design and performance of antennas, but covers environmental and mechanical considerations as well. There is additionally a thorough treatment of all the analytical and measurement techniques used in design and performance assessment. Each chapter is written by one or more leading experts in the field of antenna technology. The presentation of the history and technology of spaceborne antennas is aided by several features: * Photographs and drawings of JPL spacecraft * Illustrations to help readers visualize concepts and designs * Tables highlighting and comparing the performance of the antennas * Bibliographies at the end of each chapter leading to a variety of primary and secondary source material This book complements Large Antennas of the Deep Space Network (Wiley 2002), which surveys the ground antennas covered in support of spacecraft. Together, these two books completely cover all JPL antenna technology, in keeping with the JPL Deep Space Communications and Navigation Series mission to capture and present the many innovations in deep space telecommunications over the past decades. This book is a fascinating and informative read for all individuals working in or interested in deep space telecommunications.
Low-Noise Systems in the Deep Space Network
Author: Macgregor S. Reid
Publisher: Wiley-Blackwell
ISBN:
Category : Nature
Languages : en
Pages : 432
Book Description
The book explores the low-noise microwave systems that form the front end of all DSN ground receiving stations. It explains why the front end of each antenna is key to establishing the sensivity, polarization, frequency diversity, and capabilities of the receiving chain and, therefore, the entire ground station.
Publisher: Wiley-Blackwell
ISBN:
Category : Nature
Languages : en
Pages : 432
Book Description
The book explores the low-noise microwave systems that form the front end of all DSN ground receiving stations. It explains why the front end of each antenna is key to establishing the sensivity, polarization, frequency diversity, and capabilities of the receiving chain and, therefore, the entire ground station.
Modeling and Control of Antennas and Telescopes
Author: Wodek Gawronski
Publisher: Springer Science & Business Media
ISBN: 0387787933
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
Mechanical engineering, and engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a series featuring graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of c- centrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of series editors, each an expert in one of the areas of concentration. The names of the series editors are listed on page vi of this volume. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology. Preface This book is based on my experience with the control systems of antennas and radiotelescopes. Overwhelmingly, it is based on experience with the NASA Deep Space Network (DSN) antennas. It includes modeling the antennas, developing control algorithms, eld testing, system identi cation, performance evaluation, and 1 troubleshooting. My previous book emphasized the theoretical aspects of antenna control engineering, while this one describes the application part of the antenna control engineering.
Publisher: Springer Science & Business Media
ISBN: 0387787933
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
Mechanical engineering, and engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a series featuring graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that covers a broad range of c- centrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of series editors, each an expert in one of the areas of concentration. The names of the series editors are listed on page vi of this volume. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology. Preface This book is based on my experience with the control systems of antennas and radiotelescopes. Overwhelmingly, it is based on experience with the NASA Deep Space Network (DSN) antennas. It includes modeling the antennas, developing control algorithms, eld testing, system identi cation, performance evaluation, and 1 troubleshooting. My previous book emphasized the theoretical aspects of antenna control engineering, while this one describes the application part of the antenna control engineering.