Author: Dina Bassiri
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 344
Book Description
Large and Small Sample Properties of Maximum Likelihood Estimates for the Hierarchical Linear Model
Author: Dina Bassiri
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 344
Book Description
Publisher:
ISBN:
Category : Education
Languages : en
Pages : 344
Book Description
Hierarchical Linear Models
Author: Stephen W. Raudenbush
Publisher: SAGE
ISBN: 9780761919049
Category : Mathematics
Languages : en
Pages : 520
Book Description
New edition of a text in which Raudenbush (U. of Michigan) and Bryk (sociology, U. of Chicago) provide examples, explanations, and illustrations of the theory and use of hierarchical linear models (HLM). New material in Part I (Logic) includes information on multivariate growth models and other topics.
Publisher: SAGE
ISBN: 9780761919049
Category : Mathematics
Languages : en
Pages : 520
Book Description
New edition of a text in which Raudenbush (U. of Michigan) and Bryk (sociology, U. of Chicago) provide examples, explanations, and illustrations of the theory and use of hierarchical linear models (HLM). New material in Part I (Logic) includes information on multivariate growth models and other topics.
An Introduction to Multilevel Modeling Techniques
Author: Ronald H. Heck
Publisher: Routledge
ISBN: 1317598490
Category : Psychology
Languages : en
Pages : 460
Book Description
Univariate and multivariate multilevel models are used to understand how to design studies and analyze data in this comprehensive text distinguished by its variety of applications from the educational, behavioral, and social sciences. Basic and advanced models are developed from the multilevel regression (MLM) and latent variable (SEM) traditions within one unified analytic framework for investigating hierarchical data. The authors provide examples using each modeling approach and also explore situations where alternative approaches may be more appropriate, given the research goals. Numerous examples and exercises allow readers to test their understanding of the techniques presented. Changes to the new edition include: -The use of Mplus 7.2 for running the analyses including the input and data files at www.routledge.com/9781848725522. -Expanded discussion of MLM and SEM model-building that outlines the steps taken in the process, the relevant Mplus syntax, and tips on how to evaluate the models. -Expanded pedagogical program now with chapter objectives, boldfaced key terms, a glossary, and more tables and graphs to help students better understand key concepts and techniques. -Numerous, varied examples developed throughout which make this book appropriate for use in education, psychology, business, sociology, and the health sciences. -Expanded coverage of missing data problems in MLM using ML estimation and multiple imputation to provide currently-accepted solutions (Ch. 10). -New chapter on three-level univariate and multilevel multivariate MLM models provides greater options for investigating more complex theoretical relationships(Ch.4). -New chapter on MLM and SEM models with categorical outcomes facilitates the specification of multilevel models with observed and latent outcomes (Ch.8). -New chapter on multilevel and longitudinal mixture models provides readers with options for identifying emergent groups in hierarchical data (Ch.9). -New chapter on the utilization of sample weights, power analysis, and missing data provides guidance on technical issues of increasing concern for research publication (Ch.10). Ideal as a text for graduate courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this book’s practical approach also appeals to researchers. Recommended prerequisites are introductory univariate and multivariate statistics.
Publisher: Routledge
ISBN: 1317598490
Category : Psychology
Languages : en
Pages : 460
Book Description
Univariate and multivariate multilevel models are used to understand how to design studies and analyze data in this comprehensive text distinguished by its variety of applications from the educational, behavioral, and social sciences. Basic and advanced models are developed from the multilevel regression (MLM) and latent variable (SEM) traditions within one unified analytic framework for investigating hierarchical data. The authors provide examples using each modeling approach and also explore situations where alternative approaches may be more appropriate, given the research goals. Numerous examples and exercises allow readers to test their understanding of the techniques presented. Changes to the new edition include: -The use of Mplus 7.2 for running the analyses including the input and data files at www.routledge.com/9781848725522. -Expanded discussion of MLM and SEM model-building that outlines the steps taken in the process, the relevant Mplus syntax, and tips on how to evaluate the models. -Expanded pedagogical program now with chapter objectives, boldfaced key terms, a glossary, and more tables and graphs to help students better understand key concepts and techniques. -Numerous, varied examples developed throughout which make this book appropriate for use in education, psychology, business, sociology, and the health sciences. -Expanded coverage of missing data problems in MLM using ML estimation and multiple imputation to provide currently-accepted solutions (Ch. 10). -New chapter on three-level univariate and multilevel multivariate MLM models provides greater options for investigating more complex theoretical relationships(Ch.4). -New chapter on MLM and SEM models with categorical outcomes facilitates the specification of multilevel models with observed and latent outcomes (Ch.8). -New chapter on multilevel and longitudinal mixture models provides readers with options for identifying emergent groups in hierarchical data (Ch.9). -New chapter on the utilization of sample weights, power analysis, and missing data provides guidance on technical issues of increasing concern for research publication (Ch.10). Ideal as a text for graduate courses on multilevel, longitudinal, latent variable modeling, multivariate statistics, or advanced quantitative techniques taught in psychology, business, education, health, and sociology, this book’s practical approach also appeals to researchers. Recommended prerequisites are introductory univariate and multivariate statistics.
SAGE Quantitative Research Methods
Author: W Paul Vogt
Publisher: SAGE
ISBN: 144627571X
Category : Social Science
Languages : en
Pages : 1761
Book Description
For more than 40 years, SAGE has been one of the leading international publishers of works on quantitative research methods in the social sciences. This new collection provides readers with a representative sample of the best articles in quantitative methods that have appeared in SAGE journals as chosen by W. Paul Vogt, editor of other successful major reference collections such as Selecting Research Methods (2008) and Data Collection (2010). The volumes and articles are organized by theme rather than by discipline. Although there are some discipline-specific methods, most often quantitative research methods cut across disciplinary boundaries. Volume One: Fundamental Issues in Quantitative Research Volume Two: Measurement for Causal and Statistical Inference Volume Three: Alternatives to Hypothesis Testing Volume Four: Complex Designs for a Complex World
Publisher: SAGE
ISBN: 144627571X
Category : Social Science
Languages : en
Pages : 1761
Book Description
For more than 40 years, SAGE has been one of the leading international publishers of works on quantitative research methods in the social sciences. This new collection provides readers with a representative sample of the best articles in quantitative methods that have appeared in SAGE journals as chosen by W. Paul Vogt, editor of other successful major reference collections such as Selecting Research Methods (2008) and Data Collection (2010). The volumes and articles are organized by theme rather than by discipline. Although there are some discipline-specific methods, most often quantitative research methods cut across disciplinary boundaries. Volume One: Fundamental Issues in Quantitative Research Volume Two: Measurement for Causal and Statistical Inference Volume Three: Alternatives to Hypothesis Testing Volume Four: Complex Designs for a Complex World
Introducing Multilevel Modeling
Author: Ita G G Kreft
Publisher: SAGE
ISBN: 9781446230923
Category : Social Science
Languages : en
Pages : 164
Book Description
This is the first accessible and practical guide to using multilevel models in social research. Multilevel approaches are becoming increasingly important in social, behavioural, and educational research and it is clear from recent developments that such models are seen as being more realistic, and potentially more revealing, than ordinary regression models. While other books describe these multilevel models in considerable detail none focuses on the practical issues and potential problems of doing multilevel analyses that are covered in Introducing Multilevel Modeling. The authors' approach is user-oriented and the formal mathematics and statistics are kept to a minimum. Other key features include the use of worked examples using real data sets, analyzed using the leading computer package for multilevel modeling - "MLn." Discussion site at: http: \www.stat.ucla.eduphplibw-agoraw-agora.phtml?bn=Sagebook Data files mentioned in the book are available from: http: \www.stat.ucla.edu deleeuwsagebook
Publisher: SAGE
ISBN: 9781446230923
Category : Social Science
Languages : en
Pages : 164
Book Description
This is the first accessible and practical guide to using multilevel models in social research. Multilevel approaches are becoming increasingly important in social, behavioural, and educational research and it is clear from recent developments that such models are seen as being more realistic, and potentially more revealing, than ordinary regression models. While other books describe these multilevel models in considerable detail none focuses on the practical issues and potential problems of doing multilevel analyses that are covered in Introducing Multilevel Modeling. The authors' approach is user-oriented and the formal mathematics and statistics are kept to a minimum. Other key features include the use of worked examples using real data sets, analyzed using the leading computer package for multilevel modeling - "MLn." Discussion site at: http: \www.stat.ucla.eduphplibw-agoraw-agora.phtml?bn=Sagebook Data files mentioned in the book are available from: http: \www.stat.ucla.edu deleeuwsagebook
Burnout at Work
Author: Michael P. Leiter
Publisher: Psychology Press
ISBN: 1317909798
Category : Psychology
Languages : en
Pages : 214
Book Description
The psychological concept of burnout refers to long-term exhaustion from, and diminished interest in, the work we do. It’s a phenomenon that most of us have some understanding of, even if we haven’t always been affected directly. Many people start their working lives full of energy and enthusiasm, but far fewer are able to maintain that level of engagement. Burnout at Work: A Psychological Perspective provides a comprehensive overview of how the concept of burnout has been conceived over recent decades, as well as discussing the challenges and possible interventions that can help confront this pervasive issue. Including contributions from the most eminent researchers in this field, the book examines a range of topics including: The links between burnout and health How our individual relationships at work can affect levels of burnout The role of leadership in mediating or causing burnout The strategies that individuals can pursue to avoid burnout, as well as wider interventions. The book will be required reading for anyone studying organizational or occupational psychology, and will also interest students of business and management, and health psychology.
Publisher: Psychology Press
ISBN: 1317909798
Category : Psychology
Languages : en
Pages : 214
Book Description
The psychological concept of burnout refers to long-term exhaustion from, and diminished interest in, the work we do. It’s a phenomenon that most of us have some understanding of, even if we haven’t always been affected directly. Many people start their working lives full of energy and enthusiasm, but far fewer are able to maintain that level of engagement. Burnout at Work: A Psychological Perspective provides a comprehensive overview of how the concept of burnout has been conceived over recent decades, as well as discussing the challenges and possible interventions that can help confront this pervasive issue. Including contributions from the most eminent researchers in this field, the book examines a range of topics including: The links between burnout and health How our individual relationships at work can affect levels of burnout The role of leadership in mediating or causing burnout The strategies that individuals can pursue to avoid burnout, as well as wider interventions. The book will be required reading for anyone studying organizational or occupational psychology, and will also interest students of business and management, and health psychology.
New Developments and Techniques in Structural Equation Modeling
Author: George A. Marcoulides
Publisher: Psychology Press
ISBN: 1135657815
Category : Mathematics
Languages : en
Pages : 354
Book Description
The revision of this edited volume introduces the latest issues and developments in SEM techniques. The book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. Includes cases & examples.
Publisher: Psychology Press
ISBN: 1135657815
Category : Mathematics
Languages : en
Pages : 354
Book Description
The revision of this edited volume introduces the latest issues and developments in SEM techniques. The book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. Includes cases & examples.
Higher Education: Handbook of Theory and Research
Author: J.C. Smart
Publisher: Springer Science & Business Media
ISBN: 9401001375
Category : Education
Languages : en
Pages : 887
Book Description
Publisher: Springer Science & Business Media
ISBN: 9401001375
Category : Education
Languages : en
Pages : 887
Book Description
Bayesian Structural Equation Modeling
Author: Sarah Depaoli
Publisher: Guilford Publications
ISBN: 1462547745
Category : Social Science
Languages : en
Pages : 549
Book Description
This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and sample code in both Mplus and R. The companion website (www.guilford.com/depaoli-materials) supplies data sets; annotated code for implementation in both Mplus and R, so that users can work within their preferred platform; and output for all of the book’s examples.
Publisher: Guilford Publications
ISBN: 1462547745
Category : Social Science
Languages : en
Pages : 549
Book Description
This book offers researchers a systematic and accessible introduction to using a Bayesian framework in structural equation modeling (SEM). Stand-alone chapters on each SEM model clearly explain the Bayesian form of the model and walk the reader through implementation. Engaging worked-through examples from diverse social science subfields illustrate the various modeling techniques, highlighting statistical or estimation problems that are likely to arise and describing potential solutions. For each model, instructions are provided for writing up findings for publication, including annotated sample data analysis plans and results sections. Other user-friendly features in every chapter include "Major Take-Home Points," notation glossaries, annotated suggestions for further reading, and sample code in both Mplus and R. The companion website (www.guilford.com/depaoli-materials) supplies data sets; annotated code for implementation in both Mplus and R, so that users can work within their preferred platform; and output for all of the book’s examples.
Large Sample Techniques for Statistics
Author: Jiming Jiang
Publisher: Springer Nature
ISBN: 3030916952
Category : Mathematics
Languages : en
Pages : 689
Book Description
This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways. The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models. The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science. This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites..
Publisher: Springer Nature
ISBN: 3030916952
Category : Mathematics
Languages : en
Pages : 689
Book Description
This book offers a comprehensive guide to large sample techniques in statistics. With a focus on developing analytical skills and understanding motivation, Large Sample Techniques for Statistics begins with fundamental techniques, and connects theory and applications in engaging ways. The first five chapters review some of the basic techniques, such as the fundamental epsilon-delta arguments, Taylor expansion, different types of convergence, and inequalities. The next five chapters discuss limit theorems in specific situations of observational data. Each of the first ten chapters contains at least one section of case study. The last six chapters are devoted to special areas of applications. This new edition introduces a final chapter dedicated to random matrix theory, as well as expanded treatment of inequalities and mixed effects models. The book's case studies and applications-oriented chapters demonstrate how to use methods developed from large sample theory in real world situations. The book is supplemented by a large number of exercises, giving readers opportunity to practice what they have learned. Appendices provide context for matrix algebra and mathematical statistics. The Second Edition seeks to address new challenges in data science. This text is intended for a wide audience, ranging from senior undergraduate students to researchers with doctorates. A first course in mathematical statistics and a course in calculus are prerequisites..