Author: Björn Gustafsson
Publisher: Springer Nature
ISBN: 3030698637
Category : Mathematics
Languages : en
Pages : 156
Book Description
This book studies solutions of the Polubarinova–Galin and Löwner–Kufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping function is no longer locally univalent interesting phase transitions take place, leading to structural changes in the data of the solution, for example new zeros and poles in the case of rational maps. This topic intersects with several areas, including mathematical physics, potential theory and complex analysis. The text will be valuable to researchers and doctoral students interested in fluid dynamics, integrable systems, and conformal field theory.
Laplacian Growth on Branched Riemann Surfaces
Author: Björn Gustafsson
Publisher: Springer Nature
ISBN: 3030698637
Category : Mathematics
Languages : en
Pages : 156
Book Description
This book studies solutions of the Polubarinova–Galin and Löwner–Kufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping function is no longer locally univalent interesting phase transitions take place, leading to structural changes in the data of the solution, for example new zeros and poles in the case of rational maps. This topic intersects with several areas, including mathematical physics, potential theory and complex analysis. The text will be valuable to researchers and doctoral students interested in fluid dynamics, integrable systems, and conformal field theory.
Publisher: Springer Nature
ISBN: 3030698637
Category : Mathematics
Languages : en
Pages : 156
Book Description
This book studies solutions of the Polubarinova–Galin and Löwner–Kufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping function is no longer locally univalent interesting phase transitions take place, leading to structural changes in the data of the solution, for example new zeros and poles in the case of rational maps. This topic intersects with several areas, including mathematical physics, potential theory and complex analysis. The text will be valuable to researchers and doctoral students interested in fluid dynamics, integrable systems, and conformal field theory.
A Course in Complex Analysis and Riemann Surfaces
Author: Wilhelm Schlag
Publisher: American Mathematical Society
ISBN: 0821898477
Category : Mathematics
Languages : en
Pages : 402
Book Description
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.
Publisher: American Mathematical Society
ISBN: 0821898477
Category : Mathematics
Languages : en
Pages : 402
Book Description
Complex analysis is a cornerstone of mathematics, making it an essential element of any area of study in graduate mathematics. Schlag's treatment of the subject emphasizes the intuitive geometric underpinnings of elementary complex analysis that naturally lead to the theory of Riemann surfaces. The book begins with an exposition of the basic theory of holomorphic functions of one complex variable. The first two chapters constitute a fairly rapid, but comprehensive course in complex analysis. The third chapter is devoted to the study of harmonic functions on the disk and the half-plane, with an emphasis on the Dirichlet problem. Starting with the fourth chapter, the theory of Riemann surfaces is developed in some detail and with complete rigor. From the beginning, the geometric aspects are emphasized and classical topics such as elliptic functions and elliptic integrals are presented as illustrations of the abstract theory. The special role of compact Riemann surfaces is explained, and their connection with algebraic equations is established. The book concludes with three chapters devoted to three major results: the Hodge decomposition theorem, the Riemann-Roch theorem, and the uniformization theorem. These chapters present the core technical apparatus of Riemann surface theory at this level. This text is intended as a detailed, yet fast-paced intermediate introduction to those parts of the theory of one complex variable that seem most useful in other areas of mathematics, including geometric group theory, dynamics, algebraic geometry, number theory, and functional analysis. More than seventy figures serve to illustrate concepts and ideas, and the many problems at the end of each chapter give the reader ample opportunity for practice and independent study.
Classical and Stochastic Laplacian Growth
Author: Björn Gustafsson
Publisher: Springer
ISBN: 3319082876
Category : Science
Languages : en
Pages : 329
Book Description
This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Löwner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph. Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics.
Publisher: Springer
ISBN: 3319082876
Category : Science
Languages : en
Pages : 329
Book Description
This monograph covers a multitude of concepts, results, and research topics originating from a classical moving-boundary problem in two dimensions (idealized Hele-Shaw flows, or classical Laplacian growth), which has strong connections to many exciting modern developments in mathematics and theoretical physics. Of particular interest are the relations between Laplacian growth and the infinite-size limit of ensembles of random matrices with complex eigenvalues; integrable hierarchies of differential equations and their spectral curves; classical and stochastic Löwner evolution and critical phenomena in two-dimensional statistical models; weak solutions of hyperbolic partial differential equations of singular-perturbation type; and resolution of singularities for compact Riemann surfaces with anti-holomorphic involution. The book also provides an abundance of exact classical solutions, many explicit examples of dynamics by conformal mapping as well as a solid foundation of potential theory. An extensive bibliography covering over twelve decades of results and an introduction rich in historical and biographical details complement the eight main chapters of this monograph. Given its systematic and consistent notation and background results, this book provides a self-contained resource. It is accessible to a wide readership, from beginner graduate students to researchers from various fields in natural sciences and mathematics.
Moduli Spaces of Riemann Surfaces
Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371
Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Publisher: American Mathematical Soc.
ISBN: 0821898876
Category : Mathematics
Languages : en
Pages : 371
Book Description
Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
Eigenfunctions of the Laplacian on a Riemannian Manifold
Author: Steve Zelditch
Publisher: American Mathematical Soc.
ISBN: 1470410370
Category : Mathematics
Languages : en
Pages : 410
Book Description
Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.
Publisher: American Mathematical Soc.
ISBN: 1470410370
Category : Mathematics
Languages : en
Pages : 410
Book Description
Eigenfunctions of the Laplacian of a Riemannian manifold can be described in terms of vibrating membranes as well as quantum energy eigenstates. This book is an introduction to both the local and global analysis of eigenfunctions. The local analysis of eigenfunctions pertains to the behavior of the eigenfunctions on wavelength scale balls. After re-scaling to a unit ball, the eigenfunctions resemble almost-harmonic functions. Global analysis refers to the use of wave equation methods to relate properties of eigenfunctions to properties of the geodesic flow. The emphasis is on the global methods and the use of Fourier integral operator methods to analyze norms and nodal sets of eigenfunctions. A somewhat unusual topic is the analytic continuation of eigenfunctions to Grauert tubes in the real analytic case, and the study of nodal sets in the complex domain. The book, which grew out of lectures given by the author at a CBMS conference in 2011, provides complete proofs of some model results, but more often it gives informal and intuitive explanations of proofs of fairly recent results. It conveys inter-related themes and results and offers an up-to-date comprehensive treatment of this important active area of research.
Lectures on Riemann Surfaces
Author: Otto Forster
Publisher: Springer Science & Business Media
ISBN: 1461259614
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS
Publisher: Springer Science & Business Media
ISBN: 1461259614
Category : Mathematics
Languages : en
Pages : 262
Book Description
This book grew out of lectures on Riemann surfaces given by Otto Forster at the universities of Munich, Regensburg, and Münster. It provides a concise modern introduction to this rewarding subject, as well as presenting methods used in the study of complex manifolds in the special case of complex dimension one. From the reviews: "This book deserves very serious consideration as a text for anyone contemplating giving a course on Riemann surfaces."—-MATHEMATICAL REVIEWS
Foliations and the Geometry of 3-Manifolds
Author: Danny Calegari
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Mathematics of Complexity and Dynamical Systems
Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Generalized Analytic Functions
Author: I. N. Vekua
Publisher: Elsevier
ISBN: 1483184676
Category : Mathematics
Languages : en
Pages : 699
Book Description
Generalized Analytic Functions is concerned with foundations of the general theory of generalized analytic functions and some applications to problems of differential geometry and theory of shells. Some classes of functions and operators are discussed, along with the reduction of a positive differential quadratic form to the canonical form. Boundary value problems and infinitesimal bendings of surfaces are also considered. Comprised of six chapters, this volume begins with a detailed treatment of various problems of the general theory of generalized analytic functions as as well as boundary value problems. The reader is introduced to some classes of functions and functional spaces, with emphasis on functions of two independent variables. Subsequent chapters focus on the problem of reducing a positive differential quadratic form to the canonical form; basic properties of solutions of elliptic systems of partial differential equations of the first order, in a two-dimensional domain; and some boundary value problems for an elliptic system of equations of the first order and for an elliptic equation of the second order, in a two-dimensional domain. The final part of the book deals with problems of the theory of surfaces and the membrane theory of shells. This book is intended for students of advanced courses of the mechanico-mathematical faculties, postgraduates, and research workers.
Publisher: Elsevier
ISBN: 1483184676
Category : Mathematics
Languages : en
Pages : 699
Book Description
Generalized Analytic Functions is concerned with foundations of the general theory of generalized analytic functions and some applications to problems of differential geometry and theory of shells. Some classes of functions and operators are discussed, along with the reduction of a positive differential quadratic form to the canonical form. Boundary value problems and infinitesimal bendings of surfaces are also considered. Comprised of six chapters, this volume begins with a detailed treatment of various problems of the general theory of generalized analytic functions as as well as boundary value problems. The reader is introduced to some classes of functions and functional spaces, with emphasis on functions of two independent variables. Subsequent chapters focus on the problem of reducing a positive differential quadratic form to the canonical form; basic properties of solutions of elliptic systems of partial differential equations of the first order, in a two-dimensional domain; and some boundary value problems for an elliptic system of equations of the first order and for an elliptic equation of the second order, in a two-dimensional domain. The final part of the book deals with problems of the theory of surfaces and the membrane theory of shells. This book is intended for students of advanced courses of the mechanico-mathematical faculties, postgraduates, and research workers.
Asymptotics and Borel Summability
Author: Ovidiu Costin
Publisher: CRC Press
ISBN: 1420070320
Category : Mathematics
Languages : en
Pages : 266
Book Description
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, tr
Publisher: CRC Press
ISBN: 1420070320
Category : Mathematics
Languages : en
Pages : 266
Book Description
Incorporating substantial developments from the last thirty years into one resource, Asymptotics and Borel Summability provides a self-contained introduction to asymptotic analysis with special emphasis on topics not covered in traditional asymptotics books. The author explains basic ideas, concepts, and methods of generalized Borel summability, tr