Author: Yaochu Jin
Publisher: Springer
ISBN: 3540445110
Category : Mathematics
Languages : en
Pages : 543
Book Description
Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Knowledge Incorporation in Evolutionary Computation
Author: Yaochu Jin
Publisher: Springer
ISBN: 3540445110
Category : Mathematics
Languages : en
Pages : 543
Book Description
Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Publisher: Springer
ISBN: 3540445110
Category : Mathematics
Languages : en
Pages : 543
Book Description
Incorporation of a priori knowledge, such as expert knowledge, meta-heuristics and human preferences, as well as domain knowledge acquired during evolu tionary search, into evolutionary algorithms has received increasing interest in the recent years. It has been shown from various motivations that knowl edge incorporation into evolutionary search is able to significantly improve search efficiency. However, results on knowledge incorporation in evolution ary computation have been scattered in a wide range of research areas and a systematic handling of this important topic in evolutionary computation still lacks. This edited book is a first attempt to put together the state-of-art and re cent advances on knowledge incorporation in evolutionary computation within a unified framework. Existing methods for knowledge incorporation are di vided into the following five categories according to the functionality of the incorporated knowledge in the evolutionary algorithms. 1. Knowledge incorporation in representation, population initialization, - combination and mutation. 2. Knowledge incorporation in selection and reproduction. 3. Knowledge incorporation in fitness evaluations. 4. Knowledge incorporation through life-time learning and human-computer interactions. 5. Incorporation of human preferences in multi-objective evolutionary com putation. The intended readers of this book are graduate students, researchers and practitioners in all fields of science and engineering who are interested in evolutionary computation. The book is divided into six parts. Part I contains one introductory chapter titled "A selected introduction to evolutionary computation" by Yao, which presents a concise but insightful introduction to evolutionary computation.
Evolutionary Multiobjective Optimization
Author: Ajith Abraham
Publisher: Springer Science & Business Media
ISBN: 1846281377
Category : Computers
Languages : en
Pages : 313
Book Description
Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.
Publisher: Springer Science & Business Media
ISBN: 1846281377
Category : Computers
Languages : en
Pages : 313
Book Description
Evolutionary Multi-Objective Optimization is an expanding field of research. This book brings a collection of papers with some of the most recent advances in this field. The topic and content is currently very fashionable and has immense potential for practical applications and includes contributions from leading researchers in the field. Assembled in a compelling and well-organised fashion, Evolutionary Computation Based Multi-Criteria Optimization will prove beneficial for both academic and industrial scientists and engineers engaged in research and development and application of evolutionary algorithm based MCO. Packed with must-find information, this book is the first to comprehensively and clearly address the issue of evolutionary computation based MCO, and is an essential read for any researcher or practitioner of the technique.
Data Mining and Knowledge Discovery with Evolutionary Algorithms
Author: Alex A. Freitas
Publisher: Springer Science & Business Media
ISBN: 3662049236
Category : Computers
Languages : en
Pages : 272
Book Description
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics
Publisher: Springer Science & Business Media
ISBN: 3662049236
Category : Computers
Languages : en
Pages : 272
Book Description
This book integrates two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increasingly popular in the last few years, and their integration is currently an active research area. In general, data mining consists of extracting knowledge from data. The motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions. This book emphasizes the importance of discovering comprehensible, interesting knowledge, which is potentially useful for intelligent decision making. The text explains both basic concepts and advanced topics
Evolutionary Computation in Bioinformatics
Author: Gary B. Fogel
Publisher: Elsevier
ISBN: 0080506089
Category : Computers
Languages : en
Pages : 425
Book Description
Bioinformatics has never been as popular as it is today. The genomics revolution is generating so much data in such rapid succession that it has become difficult for biologists to decipher. In particular, there are many problems in biology that are too large to solve with standard methods. Researchers in evolutionary computation (EC) have turned their attention to these problems. They understand the power of EC to rapidly search very large and complex spaces and return reasonable solutions. While these researchers are increasingly interested in problems from the biological sciences, EC and its problem-solving capabilities are generally not yet understood or applied in the biology community.This book offers a definitive resource to bridge the computer science and biology communities. Gary Fogel and David Corne, well-known representatives of these fields, introduce biology and bioinformatics to computer scientists, and evolutionary computation to biologists and computer scientists unfamiliar with these techniques. The fourteen chapters that follow are written by leading computer scientists and biologists who examine successful applications of evolutionary computation to various problems in the biological sciences.* Describes applications of EC to bioinformatics in a wide variety of areas including DNA sequencing, protein folding, gene and protein classification, drug targeting, drug design, data mining of biological databases, and biodata visualization.* Offers industrial and academic researchers in computer science, biology, and bioinformatics an important resource for applying evolutionary computation.* Includes a detailed appendix of biological data resources.
Publisher: Elsevier
ISBN: 0080506089
Category : Computers
Languages : en
Pages : 425
Book Description
Bioinformatics has never been as popular as it is today. The genomics revolution is generating so much data in such rapid succession that it has become difficult for biologists to decipher. In particular, there are many problems in biology that are too large to solve with standard methods. Researchers in evolutionary computation (EC) have turned their attention to these problems. They understand the power of EC to rapidly search very large and complex spaces and return reasonable solutions. While these researchers are increasingly interested in problems from the biological sciences, EC and its problem-solving capabilities are generally not yet understood or applied in the biology community.This book offers a definitive resource to bridge the computer science and biology communities. Gary Fogel and David Corne, well-known representatives of these fields, introduce biology and bioinformatics to computer scientists, and evolutionary computation to biologists and computer scientists unfamiliar with these techniques. The fourteen chapters that follow are written by leading computer scientists and biologists who examine successful applications of evolutionary computation to various problems in the biological sciences.* Describes applications of EC to bioinformatics in a wide variety of areas including DNA sequencing, protein folding, gene and protein classification, drug targeting, drug design, data mining of biological databases, and biodata visualization.* Offers industrial and academic researchers in computer science, biology, and bioinformatics an important resource for applying evolutionary computation.* Includes a detailed appendix of biological data resources.
Introduction to Evolutionary Computing
Author: A.E. Eiben
Publisher: Springer Science & Business Media
ISBN: 9783540401841
Category : Computers
Languages : en
Pages : 328
Book Description
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Publisher: Springer Science & Business Media
ISBN: 9783540401841
Category : Computers
Languages : en
Pages : 328
Book Description
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Evolutionary Algorithms for Solving Multi-Objective Problems
Author: Carlos Coello Coello
Publisher: Springer Science & Business Media
ISBN: 0387367977
Category : Computers
Languages : en
Pages : 810
Book Description
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.
Publisher: Springer Science & Business Media
ISBN: 0387367977
Category : Computers
Languages : en
Pages : 810
Book Description
This textbook is a second edition of Evolutionary Algorithms for Solving Multi-Objective Problems, significantly expanded and adapted for the classroom. The various features of multi-objective evolutionary algorithms are presented here in an innovative and student-friendly fashion, incorporating state-of-the-art research. The book disseminates the application of evolutionary algorithm techniques to a variety of practical problems. It contains exhaustive appendices, index and bibliography and links to a complete set of teaching tutorials, exercises and solutions.
Handbook of AI-based Metaheuristics
Author: Anand J. Kulkarni
Publisher: CRC Press
ISBN: 1000434257
Category : Computers
Languages : en
Pages : 584
Book Description
At the heart of the optimization domain are mathematical modeling of the problem and the solution methodologies. The problems are becoming larger and with growing complexity. Such problems are becoming cumbersome when handled by traditional optimization methods. This has motivated researchers to resort to artificial intelligence (AI)-based, nature-inspired solution methodologies or algorithms. The Handbook of AI-based Metaheuristics provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural, and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications; and newly devised metaheuristic algorithms. This will be a valuable reference for researchers in industry and academia, as well as for all Master’s and PhD students working in the metaheuristics and applications domains.
Publisher: CRC Press
ISBN: 1000434257
Category : Computers
Languages : en
Pages : 584
Book Description
At the heart of the optimization domain are mathematical modeling of the problem and the solution methodologies. The problems are becoming larger and with growing complexity. Such problems are becoming cumbersome when handled by traditional optimization methods. This has motivated researchers to resort to artificial intelligence (AI)-based, nature-inspired solution methodologies or algorithms. The Handbook of AI-based Metaheuristics provides a wide-ranging reference to the theoretical and mathematical formulations of metaheuristics, including bio-inspired, swarm-based, socio-cultural, and physics-based methods or algorithms; their testing and validation, along with detailed illustrative solutions and applications; and newly devised metaheuristic algorithms. This will be a valuable reference for researchers in industry and academia, as well as for all Master’s and PhD students working in the metaheuristics and applications domains.
Neural Information Processing
Author: Chi-Sing Leung
Publisher: Springer
ISBN: 3642106846
Category : Computers
Languages : en
Pages : 916
Book Description
th This two-volume set constitutes the Proceedings of the 16 International Conference on Neural Information Processing (ICONIP 2009), held in Bangkok, Thailand, during December 1–5, 2009. ICONIP is a world-renowned international conference that is held annually in the Asia-Pacific region. This prestigious event is sponsored by the Asia Pacific Neural Network Assembly (APNNA), and it has provided an annual forum for international researchers to exchange the latest ideas and advances in neural networks and related discipline. The School of Information Technology (SIT) at King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand was the proud host of ICONIP 2009. The conference theme was “Challenges and Trends of Neural Information Processing,” with an aim to discuss the past, present, and future challenges and trends in the field of neural information processing. ICONIP 2009 accepted 145 regular session papers and 53 special session papers from a total of 466 submissions received on the Springer Online Conference Service (OCS) system. The authors of accepted papers alone covered 36 countries and - gions worldwide and there are over 500 authors in these proceedings. The technical sessions were divided into 23 topical categories, including 9 special sessions.
Publisher: Springer
ISBN: 3642106846
Category : Computers
Languages : en
Pages : 916
Book Description
th This two-volume set constitutes the Proceedings of the 16 International Conference on Neural Information Processing (ICONIP 2009), held in Bangkok, Thailand, during December 1–5, 2009. ICONIP is a world-renowned international conference that is held annually in the Asia-Pacific region. This prestigious event is sponsored by the Asia Pacific Neural Network Assembly (APNNA), and it has provided an annual forum for international researchers to exchange the latest ideas and advances in neural networks and related discipline. The School of Information Technology (SIT) at King Mongkut’s University of Technology Thonburi (KMUTT), Bangkok, Thailand was the proud host of ICONIP 2009. The conference theme was “Challenges and Trends of Neural Information Processing,” with an aim to discuss the past, present, and future challenges and trends in the field of neural information processing. ICONIP 2009 accepted 145 regular session papers and 53 special session papers from a total of 466 submissions received on the Springer Online Conference Service (OCS) system. The authors of accepted papers alone covered 36 countries and - gions worldwide and there are over 500 authors in these proceedings. The technical sessions were divided into 23 topical categories, including 9 special sessions.
PRICAI 2006: Trends in Artificial Intelligence
Author: Quiang Yang
Publisher: Springer
ISBN: 3540366687
Category : Computers
Languages : en
Pages : 1291
Book Description
This book constitutes the refereed proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, held in Guilin, China in August 2006. The book presents 81 revised full papers and 87 revised short papers together with 3 keynote talks. The papers are organized in topical sections on intelligent agents, automated reasoning, machine learning and data mining, natural language processing and speech recognition, computer vision, perception and animation, and more.
Publisher: Springer
ISBN: 3540366687
Category : Computers
Languages : en
Pages : 1291
Book Description
This book constitutes the refereed proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, held in Guilin, China in August 2006. The book presents 81 revised full papers and 87 revised short papers together with 3 keynote talks. The papers are organized in topical sections on intelligent agents, automated reasoning, machine learning and data mining, natural language processing and speech recognition, computer vision, perception and animation, and more.
Pattern Recognition in Bioinformatics
Author: Jagath C.- Rajapakse
Publisher: Springer
ISBN: 3540752862
Category : Science
Languages : en
Pages : 427
Book Description
This book constitutes the refereed proceedings of the International Workshop on Pattern Recognition in Bioinformatics, PRIB 2007, held in Singapore in October 2007. The 38 revised full papers presented were carefully reviewed and selected from 125 submissions. The papers discuss the applications of pattern recognition methods in the field of bioinformatics to solve problems in life sciences.
Publisher: Springer
ISBN: 3540752862
Category : Science
Languages : en
Pages : 427
Book Description
This book constitutes the refereed proceedings of the International Workshop on Pattern Recognition in Bioinformatics, PRIB 2007, held in Singapore in October 2007. The 38 revised full papers presented were carefully reviewed and selected from 125 submissions. The papers discuss the applications of pattern recognition methods in the field of bioinformatics to solve problems in life sciences.