Knowledge Based Integrated Multidisciplinary Aircraft Conceptual Design PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Knowledge Based Integrated Multidisciplinary Aircraft Conceptual Design PDF full book. Access full book title Knowledge Based Integrated Multidisciplinary Aircraft Conceptual Design by . Download full books in PDF and EPUB format.

Knowledge Based Integrated Multidisciplinary Aircraft Conceptual Design

Knowledge Based Integrated Multidisciplinary Aircraft Conceptual Design PDF Author:
Publisher:
ISBN: 9789175193281
Category :
Languages : en
Pages : 128

Book Description


Knowledge Based Integrated Multidisciplinary Aircraft Conceptual Design

Knowledge Based Integrated Multidisciplinary Aircraft Conceptual Design PDF Author:
Publisher:
ISBN: 9789175193281
Category :
Languages : en
Pages : 128

Book Description


Knowledge-Based Integrated Aircraft Design

Knowledge-Based Integrated Aircraft Design PDF Author: Raghu Chaitanya Munjulury
Publisher: Linköping University Electronic Press
ISBN: 9176855201
Category :
Languages : en
Pages : 101

Book Description
The design and development of new aircraft are becoming increasingly expensive and timeconsuming. To assist the design process in reducing the development cost, time, and late design changes, the conceptual design needs enhancement using new tools and methods. Integration of several disciplines in the conceptual design as one entity enables to keep the design process intact at every step and obtain a high understanding of the aircraft concepts at early stages. This thesis presents a Knowledge-Based Engineering (KBE) approach and integration of several disciplines in a holistic approach for use in aircraft conceptual design. KBE allows the reuse of obtained aircrafts’ data, information, and knowledge to gain more awareness and a better understanding of the concept under consideration at early stages of design. For this purpose, Knowledge-Based (KB) methodologies are investigated for enhanced geometrical representation and enable variable fidelity tools and Multidisciplinary Design Optimization (MDO). The geometry parameterization techniques are qualitative approaches that produce quantitative results in terms of both robustness and flexibility of the design parameterization. The information/parameters from all tools/disciplines and the design intent of the generated concepts are saved and shared via a central database. The integrated framework facilitates multi-fidelity analysis, combining low-fidelity models with high-fidelity models for a quick estimation, enabling a rapid analysis and enhancing the time for a MDO process. The geometry is further propagated to other disciplines [Computational Fluid Dynamics (CFD), Finite Element Analysis (FEA)] for analysis. This is possible with an automated streamlined process (for CFD, FEM, system simulation) to analyze and increase knowledge early in the design process. Several processes were studied to streamline the geometry for CFD. Two working practices, one for parametric geometry and another for KB geometry are presented for automatic mesh generation. It is observed that analytical methods provide quicker weight estimation of the design and when coupled with KBE provide a better understanding. Integration of 1-D and 3-D models offers the best of both models: faster simulation, and superior geometrical representation. To validate both the framework and concepts generated from the tools, they are implemented in academia in several courses at Linköping University and in industry

On Aircraft Conceptual Design

On Aircraft Conceptual Design PDF Author: Kristian Amadori
Publisher:
ISBN: 9789173938808
Category :
Languages : en
Pages : 87

Book Description
This thesis presents a design framework where analytical tools are linked together and operated from an efficient system level interface. The application field is aircraft conceptual design. Particular attention has been paid to CAD system integration and design optimization.

Advanced Aircraft Design

Advanced Aircraft Design PDF Author: Egbert Torenbeek
Publisher: John Wiley & Sons
ISBN: 1118568095
Category : Technology & Engineering
Languages : en
Pages : 412

Book Description
Although the overall appearance of modern airliners has not changed a lot since the introduction of jetliners in the 1950s, their safety, efficiency and environmental friendliness have improved considerably. Main contributors to this have been gas turbine engine technology, advanced materials, computational aerodynamics, advanced structural analysis and on-board systems. Since aircraft design became a highly multidisciplinary activity, the development of multidisciplinary optimization (MDO) has become a popular new discipline. Despite this, the application of MDO during the conceptual design phase is not yet widespread. Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes presents a quasi-analytical optimization approach based on a concise set of sizing equations. Objectives are aerodynamic efficiency, mission fuel, empty weight and maximum takeoff weight. Independent design variables studied include design cruise altitude, wing area and span and thrust or power loading. Principal features of integrated concepts such as the blended wing and body and highly non-planar wings are also covered. The quasi-analytical approach enables designers to compare the results of high-fidelity MDO optimization with lower-fidelity methods which need far less computational effort. Another advantage to this approach is that it can provide answers to “what if” questions rapidly and with little computational cost. Key features: Presents a new fundamental vision on conceptual airplane design optimization Provides an overview of advanced technologies for propulsion and reducing aerodynamic drag Offers insight into the derivation of design sensitivity information Emphasizes design based on first principles Considers pros and cons of innovative configurations Reconsiders optimum cruise performance at transonic Mach numbers Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes advances understanding of the initial optimization of civil airplanes and is a must-have reference for aerospace engineering students, applied researchers, aircraft design engineers and analysts.

Collaborative Multidisciplinary Design Optimization for Conceptual Design of Complex Products

Collaborative Multidisciplinary Design Optimization for Conceptual Design of Complex Products PDF Author: Edris Safavi
Publisher: Linköping University Electronic Press
ISBN: 9176857123
Category :
Languages : en
Pages : 68

Book Description
MULTIDESCIPLINARY design optimization (MDO) has developed in theory andpractice during the last three decades with the aim of optimizing complexproducts as well as cutting costs and product development time. Despite thisdevelopment, the implementation of such a method in industry is still a challenge andmany complex products suffer time and cost overruns. Employing higher fidelity models (HFMs) in conceptual design, one of the early and most important phases in the design process, can play an important role in increasing the knowledge base regarding the concept under evaluation. However, design space in the presence of HFMs could significantly be expanded. MDO has proven to be an important tool for searching the design space and finding optimal solutions. This leads to a reduction in the number of design iterations later in the design process, with wiser and more robust decisions made early in the design process to rely on. In complex products, different systems from a multitude of engineering disciplines have to work tightly together. This stresses the importance of evolving various domain experts in the design process to improve the design from diverse engineering perspectives. Involving more engineers in the design process early on raises the challenges of collaboration, known to be an important barrier to MDO implementation in industry. Another barrier is the unavailability and lack of MDO experts in industry; those who understand the MDO process and know the implementation tasks involved. In an endeavor to address the mentioned implementation challenges, a novel collaborative multidisciplinary design optimization (CMDO) framework is defined in order to be applied in the conceptual design phase. CMDO provides a platform where many engineers team up to increase the likelihood of more accurate decisions being taken early on. The structured way to define the engineering responsibilities and tasks involved in MDO helps to facilitate the implementation process. It will be further elaborated that educating active engineers with MDO knowledge is an expensive and time-consuming process for industries. Therefore, a guideline for CMDO implementation in conceptual design is proposed in this thesis that can be easily followed by design engineers with limited prior knowledge in MDO. The performance of the framework is evaluated in a number of case studies, including applications such as aircraft design and the design of a tidal water power plant, and by engineers in industry and student groups in academia.

Aircraft Design

Aircraft Design PDF Author: Mohammad H. Sadraey
Publisher: John Wiley & Sons
ISBN: 1119953405
Category : Technology & Engineering
Languages : en
Pages : 811

Book Description
A comprehensive approach to the air vehicle design process using the principles of systems engineering Due to the high cost and the risks associated with development, complex aircraft systems have become a prime candidate for the adoption of systems engineering methodologies. This book presents the entire process of aircraft design based on a systems engineering approach from conceptual design phase, through to preliminary design phase and to detail design phase. Presenting in one volume the methodologies behind aircraft design, this book covers the components and the issues affected by design procedures. The basic topics that are essential to the process, such as aerodynamics, flight stability and control, aero-structure, and aircraft performance are reviewed in various chapters where required. Based on these fundamentals and design requirements, the author explains the design process in a holistic manner to emphasise the integration of the individual components into the overall design. Throughout the book the various design options are considered and weighed against each other, to give readers a practical understanding of the process overall. Readers with knowledge of the fundamental concepts of aerodynamics, propulsion, aero-structure, and flight dynamics will find this book ideal to progress towards the next stage in their understanding of the topic. Furthermore, the broad variety of design techniques covered ensures that readers have the freedom and flexibility to satisfy the design requirements when approaching real-world projects. Key features: • Provides full coverage of the design aspects of an air vehicle including: aeronautical concepts, design techniques and design flowcharts • Features end of chapter problems to reinforce the learning process as well as fully solved design examples at component level • Includes fundamental explanations for aeronautical engineering students and practicing engineers • Features a solutions manual to sample questions on the book’s companion website Companion website - www.wiley.com/go/sadraey

Enhancing Aircraft Conceptual Design Using Multidisciplinary Optimization

Enhancing Aircraft Conceptual Design Using Multidisciplinary Optimization PDF Author: Daniel P. Raymer
Publisher:
ISBN: 9789172832596
Category :
Languages : en
Pages : 150

Book Description


Conceptual Aircraft Design

Conceptual Aircraft Design PDF Author: Ajoy Kumar Kundu
Publisher: John Wiley & Sons
ISBN: 1119500273
Category : Technology & Engineering
Languages : en
Pages : 1056

Book Description
Provides a Comprehensive Introduction to Aircraft Design with an Industrial Approach This book introduces readers to aircraft design, placing great emphasis on industrial practice. It includes worked out design examples for several different classes of aircraft, including Learjet 45, Tucano Turboprop Trainer, BAe Hawk and Airbus A320. It considers performance substantiation and compliance to certification requirements and market specifications of take-off/landing field lengths, initial climb/high speed cruise, turning capability and payload/range. Military requirements are discussed, covering some aspects of combat, as is operating cost estimation methodology, safety considerations, environmental issues, flight deck layout, avionics and more general aircraft systems. The book also includes a chapter on electric aircraft design along with a full range of industry standard aircraft sizing analyses. Split into two parts, Conceptual Aircraft Design: An Industrial Approach spends the first part dealing with the pre-requisite information for configuring aircraft so that readers can make informed decisions when designing vessels. The second part devotes itself to new aircraft concept definition. It also offers additional analyses and design information (e.g., on cost, manufacture, systems, role of CFD, etc.) integral to conceptual design study. The book finishes with an introduction to electric aircraft and futuristic design concepts currently under study. Presents an informative, industrial approach to aircraft design Features design examples for aircraft such as the Learjet 45, Tucano Turboprop Trainer, BAe Hawk, Airbus A320 Includes a full range of industry standard aircraft sizing analyses Looks at several performance substantiation and compliance to certification requirements Discusses the military requirements covering some combat aspects Accompanied by a website hosting supporting material Conceptual Aircraft Design: An Industrial Approach is an excellent resource for those designing and building modern aircraft for commercial, military, and private use.

Design Optimization of Unmanned Aerial Vehicles

Design Optimization of Unmanned Aerial Vehicles PDF Author: Athanasios Papageorgiou
Publisher: Linköping University Electronic Press
ISBN: 917519001X
Category :
Languages : en
Pages : 99

Book Description
Over the last years, Unmanned Aerial Vehicles (UAVs) have gradually become a more efficient alternative to manned aircraft, and at present, they are being deployed in a broad spectrum of both military as well as civilian missions. This has led to an unprecedented market expansion with new challenges for the aeronautical industry, and as a result, it has created a need to implement the latest design tools in order to achieve faster idea-to-market times and higher product performance. As a complex engineering product, UAVs are comprised of numerous sub-systems with intricate synergies and hidden dependencies. To this end, Multidisciplinary Design Optimization (MDO) is a method that can identify systems with better performance through the concurrent consideration of several engineering disciplines under a common framework. Nevertheless, there are still many limitations in MDO, and to this date, some of the most critical gaps can be found in the disciplinary modeling, in the analysis capabilities, and in the organizational integration of the method. As an aeronautical product, UAVs are also expected to work together with other systems and to perform in various operating environments. In this respect, System of Systems (SoS) models enable the exploration of design interactions in various missions, and hence, they allow decision makers to identify capabilities that are beyond those of each individual system. As expected, this significantly more complex formulation raises new challenges regarding the decomposition of the problem, while at the same time, it sets further requirements in terms of analyses and mission simulation. In this light, this thesis focuses on the design optimization of UAVs by enhancing the current MDO capabilities and by exploring the use of SoS models. Two literature reviews serve as the basis for identifying the gaps and trends in the field, and in turn, five case studies try to address them by proposing a set of expansions. On the whole, the problem is approached from a technical as well as an organizational point of view, and thus, this research aims to propose solutions that can lead to better performance and that are also meaningful to the Product Development Process (PDP). Having established the above foundation, this work delves firstly into MDO, and more specifically, it presents a framework that has been enhanced with further system models and analysis capabilities, efficient computing solutions, and data visualization tools. At a secondary level, this work addresses the topic of SoS, and in particular, it presents a multi-level decomposition strategy, multi-fidelity disciplinary models, and a mission simulation module. Overall, this thesis presents quantitative data which aim to illustrate the benefits of design optimization on the performance of UAVs, and it concludes with a qualitative assessment of the effects that the proposed methods and tools can have on both the PDP and the organization.

Recent Advances in Multidisciplinary Analysis and Optimization

Recent Advances in Multidisciplinary Analysis and Optimization PDF Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 1084

Book Description