Iterative Multi-region Technique for the Analysis of Large Scale Electromagnetic Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Iterative Multi-region Technique for the Analysis of Large Scale Electromagnetic Problems PDF full book. Access full book title Iterative Multi-region Technique for the Analysis of Large Scale Electromagnetic Problems by Mohamed Hassan Al Sharkawy. Download full books in PDF and EPUB format.

Iterative Multi-region Technique for the Analysis of Large Scale Electromagnetic Problems

Iterative Multi-region Technique for the Analysis of Large Scale Electromagnetic Problems PDF Author: Mohamed Hassan Al Sharkawy
Publisher:
ISBN:
Category :
Languages : en
Pages : 308

Book Description
In this work an iterative approach using the finite difference frequency domain method is presented in order to solve the problem of scattering from large scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller sub-regions and solve each sub-region separately. Then the sub-region solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the Iterative Multi-Region technique.

Iterative Multi-region Technique for the Analysis of Large Scale Electromagnetic Problems

Iterative Multi-region Technique for the Analysis of Large Scale Electromagnetic Problems PDF Author: Mohamed Hassan Al Sharkawy
Publisher:
ISBN:
Category :
Languages : en
Pages : 308

Book Description
In this work an iterative approach using the finite difference frequency domain method is presented in order to solve the problem of scattering from large scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller sub-regions and solve each sub-region separately. Then the sub-region solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the Iterative Multi-Region technique.

Electromagnetic Scattering Using the Iterative Multiregion Technique

Electromagnetic Scattering Using the Iterative Multiregion Technique PDF Author: Mohamed Hassan Al Sharkawy
Publisher: Morgan & Claypool Publishers
ISBN: 1598295357
Category : Electromagnetic waves
Languages : en
Pages : 109

Book Description
In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique. Different enhancement procedures are investigated and introduced toward the construction of this technique. These procedures are the following: 1) a hybrid technique combining the IMR technique and a method of moment technique is found to be efficient in producing accurate results with a remarkable computer memory saving; 2) the IMR technique is implemented on a parallel platform that led to a tremendous computational time saving; 3) together, the multigrid technique and the incomplete lower and upper preconditioner are used with the IMR technique to speed up the convergence rate of the final solution, which reduces the total computational time. Thus, the proposed iterative technique, in conjunction with the enhancement procedures, introduces a novel approach to solving large open-boundary electromagnetic problems including unconnected objects in an efficient and robust way.

Electromagnetic Scattering using the Iterative Multi-Region Technique

Electromagnetic Scattering using the Iterative Multi-Region Technique PDF Author: Mohamed H. Al Sharkawy
Publisher: Springer Nature
ISBN: 3031017021
Category : Technology & Engineering
Languages : en
Pages : 99

Book Description
In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique. Different enhancement procedures are investigated and introduced toward the construction of this technique. These procedures are the following: 1) a hybrid technique combining the IMR technique and a method of moment technique is found to be efficient in producing accurate results with a remarkable computer memory saving; 2) the IMR technique is implemented on a parallel platform that led to a tremendous computational time saving; 3) together, the multigrid technique and the incomplete lower and upper preconditioner are used with the IMR technique to speed up the convergence rate of the final solution, which reduces the total computational time. Thus, the proposed iterative technique, in conjunction with the enhancement procedures, introduces a novel approach to solving large open-boundary electromagnetic problems including unconnected objects in an efficient and robust way. Contents: Basics of the FDFD Method / IMR Technique for Large-Scale Electromagnetic Scattering Problems: 3D Case / IMR Technique for Large-Scale Electromagnetic Scattering Problems: 2D Case / The IMR Algorithm Using a Hybrid FDFD and Method of Moments Technique / Parallelization of the Iterative Multiregion Technique / Combined Multigrid Technique and IMR Algorithm / Concluding Remarks / Appendices

Electromagnetic Scattering Using The Iterative Multi Region Technique

Electromagnetic Scattering Using The Iterative Multi Region Technique PDF Author: Mohamed Hassan Al Sharkawy
Publisher:
ISBN: 9781598295375
Category : Electromagnetic waves
Languages : en
Pages : 99

Book Description
In this work, an iterative approach using the finite difference frequency domain method is presented to solve the problem of scattering from large-scale electromagnetic structures. The idea of the proposed iterative approach is to divide one computational domain into smaller subregions and solve each subregion separately. Then the subregion solutions are combined iteratively to obtain a solution for the complete domain. As a result, a considerable reduction in the computation time and memory is achieved. This procedure is referred to as the iterative multiregion (IMR) technique.

Advanced Computational Electromagnetic Methods

Advanced Computational Electromagnetic Methods PDF Author: Wenhua Yu
Publisher: Artech House
ISBN: 1608078973
Category : Technology & Engineering
Languages : en
Pages : 597

Book Description
This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

Digest

Digest PDF Author: IEEE Antennas and Propagation Society. International Symposium
Publisher:
ISBN:
Category : Antennas (Electronics)
Languages : en
Pages : 542

Book Description


The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems

The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems PDF Author: Ozgur Ergul
Publisher: John Wiley & Sons
ISBN: 111997741X
Category : Science
Languages : en
Pages : 484

Book Description
The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetic Problems provides a detailed and instructional overview of implementing MLFMA. The book: Presents a comprehensive treatment of the MLFMA algorithm, including basic linear algebra concepts, recent developments on the parallel computation, and a number of application examples Covers solutions of electromagnetic problems involving dielectric objects and perfectly-conducting objects Discusses applications including scattering from airborne targets, scattering from red blood cells, radiation from antennas and arrays, metamaterials etc. Is written by authors who have more than 25 years experience on the development and implementation of MLFMA The book will be useful for post-graduate students, researchers, and academics, studying in the areas of computational electromagnetics, numerical analysis, and computer science, and who would like to implement and develop rigorous simulation environments based on MLFMA.

Multiple-grid Adaptive Integral Method for General Multi-region Problems

Multiple-grid Adaptive Integral Method for General Multi-region Problems PDF Author: Mingfeng Wu
Publisher:
ISBN:
Category :
Languages : en
Pages : 254

Book Description
Efficient electromagnetic solvers based on surface integral equations (SIEs) are developed for the analysis of scattering from large-scale and complex composite structures that consist of piecewise homogeneous magnetodielectric and perfect electrically/magnetically conducting (PEC/PMC) regions. First, a multiple-grid extension of the adaptive integral method (AIM) is presented for multi-region problems. The proposed method accelerates the iterative method-of-moments solution of the pertinent SIEs by employing multiple auxiliary Cartesian grids: If the structure of interest is composed of K homogeneous regions, it introduces K different auxiliary grids. It uses the kth auxiliary grid first to determine near-zones for the basis functions and then to execute AIM projection/anterpolation, propagation, interpolation, and near-zone pre-correction stages in the kth region. Thus, the AIM stages are executed a total of K times using different grids and different groups of basis functions. The proposed multiple-grid AIM scheme requires a total of O(Nnz, near + [N-ary summation]kNk}^ClogNkC) operations per iteration, where N^{nz, near} denotes the total number of near-zone interactions in all regions and NkC denotes the number of nodes of the kth Cartesian grid. Numerical results validate the method's accuracy and reduced complexity for large-scale canonical structures with large numbers of regions (up to ~106 degrees of freedom and ~103 regions). Then, a Green function modification approach and a scheme of Hankel- to Teoplitz-matrix conversions are efficiently incorporated to the multiple-grid AIM method to account for a PEC/PMC plane. Theoretical analysis and numerical examples show that, compared to a brute-force imaging scheme, the Green function modification approach reduces the simulation time and memory requirement by a factor of (almost) two or larger if the structure of interest is terminated on or resides above the plane, respectively. In addition, the SIEs are extended to cover structures composed of metamaterial regions, PEC regions, and PEC-material junctions. Moreover, recently introduced well-conditioned SIEs are adopted to achieve faster iterative solver convergence. Comprehensive numerical tests are performed to evaluate the accuracy, computational complexity, and convergence of the novel formulation which is shown to significantly reduce the number of iterations and the overall computational work. Lastly, the efficiency and capabilities of the proposed solvers are demonstrated by solving complex scattering problems, specifically those pertinent to analysis of wave propagation in natural forested environments, the design of metamaterials, and the application of metamaterials to radar cross section reduction.

Radio Science

Radio Science PDF Author:
Publisher:
ISBN:
Category : Radio meteorology
Languages : en
Pages : 400

Book Description


Techniques for Numerically Efficient Analysis of Multi-scale Problems in Computational Electromagnetics

Techniques for Numerically Efficient Analysis of Multi-scale Problems in Computational Electromagnetics PDF Author: Kapil Sharma
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Multi-scale problems in numerical electromagnetics are becoming increasingly common with the advent and widespread usage of compact mobile phones, body area networks, small and nano antennas, sensors, high-speed interconnects, integrated circuits and complex electronic packaging structures, to name just a few commercial applications. Numerical electromagnetic modeling and simulation of structures with multi-scale features is highly challenging due to the fact that electrically small as well as large features are simultaneously present in the model which demands for discretization of the computational domain such that the number of degrees of freedom is very large, thus, levying a heavy burden on computational resources. The multi-scale nature of a given problem also exacerbates the challenge of generating very fine meshes which do not introduce instabilities or ill-conditioned behaviors. In this work we introduce a hybrid technique, which combines frequency domain and time domain techniques in a manner such that the fine features (electrically small) of the object being modeled are handled by the Method of Moments (MoM) technique while the electrically large parts of the structure are dealt with by using the Finite-Difference Time-Domain (FDTD) technique in order to reduce the computational burden. Recently, structures with multi-scale features have been simulated by using the dipole moment (DM) approach combined with the FDTD technique to handle fine features in a multi-scale geometry. However, when the size of the scatterer becomes larger in terms of the wavelength and the quasi-static assumption becomes invalid, extensive modifications of the DM/FDTD hybrid approach are needed resulting in a high computational cost.The research proposes a novel hybrid FDTD technique, which combines the Method of Moments and the Finite-Difference Time-Domain techniques directly in the time domain circumventing the need to carry out frequency transform calculations as required in the DM approach when the object size is not small (size>/20). The proposed technique utilizes piecewise sinusoidal basis functions to represent the currents on arbitrarily shaped wires with fine features, and modified RWG basis function for surfaces. The fields scattered by the object with fine features in MoM region are computed in the time domain on a planar interface. The time domain fields obtained at the planar interface are then combined with the FDTD update equations. In contrast to the existing techniques used to handle this type of problems, the proposed technique is both efficient as well as stable.