Intelligent Systems and Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Intelligent Systems and Applications PDF full book. Access full book title Intelligent Systems and Applications by Yaxin Bi. Download full books in PDF and EPUB format.

Intelligent Systems and Applications

Intelligent Systems and Applications PDF Author: Yaxin Bi
Publisher: Springer Nature
ISBN: 3030295133
Category : Technology & Engineering
Languages : en
Pages : 1327

Book Description
The book presents a remarkable collection of chapters covering a wide range of topics in the areas of intelligent systems and artificial intelligence, and their real-world applications. It gathers the proceedings of the Intelligent Systems Conference 2019, which attracted a total of 546 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer-review process, after which 190 were selected for inclusion in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have made it possible to tackle a host of problems more effectively. This branching out of computational intelligence in several directions and use of intelligent systems in everyday applications have created the need for an international conference as a venue for reporting on the latest innovations and trends. This book collects both theory and application based chapters on virtually all aspects of artificial intelligence; presenting state-of-the-art intelligent methods and techniques for solving real-world problems, along with a vision for future research, it represents a unique and valuable asset.

Intelligent Systems and Applications

Intelligent Systems and Applications PDF Author: Yaxin Bi
Publisher: Springer Nature
ISBN: 3030295133
Category : Technology & Engineering
Languages : en
Pages : 1327

Book Description
The book presents a remarkable collection of chapters covering a wide range of topics in the areas of intelligent systems and artificial intelligence, and their real-world applications. It gathers the proceedings of the Intelligent Systems Conference 2019, which attracted a total of 546 submissions from pioneering researchers, scientists, industrial engineers, and students from all around the world. These submissions underwent a double-blind peer-review process, after which 190 were selected for inclusion in these proceedings. As intelligent systems continue to replace and sometimes outperform human intelligence in decision-making processes, they have made it possible to tackle a host of problems more effectively. This branching out of computational intelligence in several directions and use of intelligent systems in everyday applications have created the need for an international conference as a venue for reporting on the latest innovations and trends. This book collects both theory and application based chapters on virtually all aspects of artificial intelligence; presenting state-of-the-art intelligent methods and techniques for solving real-world problems, along with a vision for future research, it represents a unique and valuable asset.

Advanced Machine Intelligence and Signal Processing

Advanced Machine Intelligence and Signal Processing PDF Author: Deepak Gupta
Publisher: Springer Nature
ISBN: 9811908400
Category : Technology & Engineering
Languages : en
Pages : 859

Book Description
This book covers the latest advancements in the areas of machine learning, computer vision, pattern recognition, computational learning theory, big data analytics, network intelligence, signal processing, and their applications in real world. The topics covered in machine learning involve feature extraction, variants of support vector machine (SVM), extreme learning machine (ELM), artificial neural network (ANN), and other areas in machine learning. The mathematical analysis of computer vision and pattern recognition involves the use of geometric techniques, scene understanding and modeling from video, 3D object recognition, localization and tracking, medical image analysis, and so on. Computational learning theory involves different kinds of learning like incremental, online, reinforcement, manifold, multitask, semi-supervised, etc. Further, it covers the real-time challenges involved while processing big data analytics and stream processing with the integration of smart data computing services and interconnectivity. Additionally, it covers the recent developments to network intelligence for analyzing the network information and thereby adapting the algorithms dynamically to improve the efficiency. In the last, it includes the progress in signal processing to process the normal and abnormal categories of real-world signals, for instance signals generated from IoT devices, smart systems, speech, videos, etc., and involves biomedical signal processing: electrocardiogram (ECG), electroencephalogram (EEG), magnetoencephalography (MEG), and electromyogram (EMG).

Probabilistic Machine Learning

Probabilistic Machine Learning PDF Author: Kevin P. Murphy
Publisher: MIT Press
ISBN: 0262376008
Category : Computers
Languages : en
Pages : 1352

Book Description
An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty. An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning. Covers generation of high dimensional outputs, such as images, text, and graphs Discusses methods for discovering insights about data, based on latent variable models Considers training and testing under different distributions Explores how to use probabilistic models and inference for causal inference and decision making Features online Python code accompaniment

Introduction to Stochastic Search and Optimization

Introduction to Stochastic Search and Optimization PDF Author: James C. Spall
Publisher: John Wiley & Sons
ISBN: 0471441902
Category : Mathematics
Languages : en
Pages : 620

Book Description
* Unique in its survey of the range of topics. * Contains a strong, interdisciplinary format that will appeal to both students and researchers. * Features exercises and web links to software and data sets.

Python 3 Data Visualization Using Google Gemini

Python 3 Data Visualization Using Google Gemini PDF Author: Oswald Campesato
Publisher: Stylus Publishing, LLC
ISBN: 1501519832
Category : Computers
Languages : en
Pages : 199

Book Description
This book offers a comprehensive guide to leveraging Python-based data visualization techniques with the innovative capabilities of Google Gemini. Tailored for individuals proficient in Python seeking to enhance their visualization skills, it explores essential libraries like Pandas, Matplotlib, and Seaborn, along with insights into the innovative Gemini platform. With a focus on practicality and efficiency, it delivers a rapid yet thorough exploration of data visualization methodologies, supported by Gemini-generated code samples. Companion files with source code and figures are available for downloading. FEATURES: Covers Python-based data visualization libraries and techniques Includes practical examples and Gemini-generated code samples for efficient learning Integrates Google Gemini for advanced data visualization capabilities Sets up a conducive development environment for a seamless coding experience Includes companion files for downloading with source code and figures

Python Machine Learning By Example

Python Machine Learning By Example PDF Author: Yuxi (Hayden) Liu
Publisher: Packt Publishing Ltd
ISBN: 1789617553
Category : Mathematics
Languages : en
Pages : 370

Book Description
Grasp machine learning concepts, techniques, and algorithms with the help of real-world examples using Python libraries such as TensorFlow and scikit-learn Key FeaturesExploit the power of Python to explore the world of data mining and data analyticsDiscover machine learning algorithms to solve complex challenges faced by data scientists todayUse Python libraries such as TensorFlow and Keras to create smart cognitive actions for your projectsBook Description The surge in interest in machine learning (ML) is due to the fact that it revolutionizes automation by learning patterns in data and using them to make predictions and decisions. If you’re interested in ML, this book will serve as your entry point to ML. Python Machine Learning By Example begins with an introduction to important ML concepts and implementations using Python libraries. Each chapter of the book walks you through an industry adopted application. You’ll implement ML techniques in areas such as exploratory data analysis, feature engineering, and natural language processing (NLP) in a clear and easy-to-follow way. With the help of this extended and updated edition, you’ll understand how to tackle data-driven problems and implement your solutions with the powerful yet simple Python language and popular Python packages and tools such as TensorFlow, scikit-learn, gensim, and Keras. To aid your understanding of popular ML algorithms, the book covers interesting and easy-to-follow examples such as news topic modeling and classification, spam email detection, stock price forecasting, and more. By the end of the book, you’ll have put together a broad picture of the ML ecosystem and will be well-versed with the best practices of applying ML techniques to make the most out of new opportunities. What you will learnUnderstand the important concepts in machine learning and data scienceUse Python to explore the world of data mining and analyticsScale up model training using varied data complexities with Apache SparkDelve deep into text and NLP using Python libraries such NLTK and gensimSelect and build an ML model and evaluate and optimize its performanceImplement ML algorithms from scratch in Python, TensorFlow, and scikit-learnWho this book is for If you’re a machine learning aspirant, data analyst, or data engineer highly passionate about machine learning and want to begin working on ML assignments, this book is for you. Prior knowledge of Python coding is assumed and basic familiarity with statistical concepts will be beneficial although not necessary.

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images PDF Author: Yakoub Bazi
Publisher: MDPI
ISBN: 3036509860
Category : Science
Languages : en
Pages : 438

Book Description
The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.

Innovative Computing and Communications

Innovative Computing and Communications PDF Author: Aboul Ella Hassanien
Publisher: Springer Nature
ISBN: 9819741491
Category :
Languages : en
Pages : 698

Book Description


Machine Intelligence in Mechanical Engineering

Machine Intelligence in Mechanical Engineering PDF Author: K. Palanikumar
Publisher: Elsevier
ISBN: 0443186456
Category : Technology & Engineering
Languages : en
Pages : 451

Book Description
Machine Intelligence in Mechanical Engineering explains the latest applications of machine intelligence and data-driven decision-making in mechanical engineering industries. By providing introductory theory, trouble-shooting case studies, detailed algorithms and implementation instructions, this interdisciplinary book will help readers explore additional applications in their own fields. Those with a mechanical background will learn the important tasks related to preprocessing of datasets, feature extraction, verification and validation of machine learning models which unlock these new methods. Machine Intelligence is currently a key topic in industrial automation, enabling machines to solve complex engineering tasks and driving efficiencies in the smart production line. Smart preventative maintenance systems can prevent machine downtime, smart monitoring and control can produce more effective workflows with less human intervention. - Provides detailed case studies of how machine intelligence has been used in mechanical engineering applications - Includes a basic introduction to machine learning algorithms and their implementation - Addresses innovative applications of AR/VR technology in mechanical engineering

Hands-On Transfer Learning with Python

Hands-On Transfer Learning with Python PDF Author: Dipanjan Sarkar
Publisher: Packt Publishing Ltd
ISBN: 1788839056
Category : Computers
Languages : en
Pages : 430

Book Description
Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.