Author: J. Austin Cottrell
Publisher: John Wiley & Sons
ISBN: 0470749091
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
“The authors are the originators of isogeometric analysis, are excellent scientists and good educators. It is very original. There is no other book on this topic.” —René de Borst, Eindhoven University of Technology Written by leading experts in the field and featuring fully integrated colour throughout, Isogeometric Analysis provides a groundbreaking solution for the integration of CAD and FEA technologies. Tom Hughes and his researchers, Austin Cottrell and Yuri Bazilevs, present their pioneering isogeometric approach, which aims to integrate the two techniques of CAD and FEA using precise NURBS geometry in the FEA application. This technology offers the potential to revolutionise automobile, ship and airplane design and analysis by allowing models to be designed, tested and adjusted in one integrative stage. Providing a systematic approach to the topic, the authors begin with a tutorial introducing the foundations of Isogeometric Analysis, before advancing to a comprehensive coverage of the most recent developments in the technique. The authors offer a clear explanation as to how to add isogeometric capabilities to existing finite element computer programs, demonstrating how to implement and use the technology. Detailed programming examples and datasets are included to impart a thorough knowledge and understanding of the material. Provides examples of different applications, showing the reader how to implement isogeometric models Addresses readers on both sides of the CAD/FEA divide Describes Non-Uniform Rational B-Splines (NURBS) basis functions
Isogeometric Analysis
Author: J. Austin Cottrell
Publisher: John Wiley & Sons
ISBN: 0470749091
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
“The authors are the originators of isogeometric analysis, are excellent scientists and good educators. It is very original. There is no other book on this topic.” —René de Borst, Eindhoven University of Technology Written by leading experts in the field and featuring fully integrated colour throughout, Isogeometric Analysis provides a groundbreaking solution for the integration of CAD and FEA technologies. Tom Hughes and his researchers, Austin Cottrell and Yuri Bazilevs, present their pioneering isogeometric approach, which aims to integrate the two techniques of CAD and FEA using precise NURBS geometry in the FEA application. This technology offers the potential to revolutionise automobile, ship and airplane design and analysis by allowing models to be designed, tested and adjusted in one integrative stage. Providing a systematic approach to the topic, the authors begin with a tutorial introducing the foundations of Isogeometric Analysis, before advancing to a comprehensive coverage of the most recent developments in the technique. The authors offer a clear explanation as to how to add isogeometric capabilities to existing finite element computer programs, demonstrating how to implement and use the technology. Detailed programming examples and datasets are included to impart a thorough knowledge and understanding of the material. Provides examples of different applications, showing the reader how to implement isogeometric models Addresses readers on both sides of the CAD/FEA divide Describes Non-Uniform Rational B-Splines (NURBS) basis functions
Publisher: John Wiley & Sons
ISBN: 0470749091
Category : Technology & Engineering
Languages : en
Pages : 352
Book Description
“The authors are the originators of isogeometric analysis, are excellent scientists and good educators. It is very original. There is no other book on this topic.” —René de Borst, Eindhoven University of Technology Written by leading experts in the field and featuring fully integrated colour throughout, Isogeometric Analysis provides a groundbreaking solution for the integration of CAD and FEA technologies. Tom Hughes and his researchers, Austin Cottrell and Yuri Bazilevs, present their pioneering isogeometric approach, which aims to integrate the two techniques of CAD and FEA using precise NURBS geometry in the FEA application. This technology offers the potential to revolutionise automobile, ship and airplane design and analysis by allowing models to be designed, tested and adjusted in one integrative stage. Providing a systematic approach to the topic, the authors begin with a tutorial introducing the foundations of Isogeometric Analysis, before advancing to a comprehensive coverage of the most recent developments in the technique. The authors offer a clear explanation as to how to add isogeometric capabilities to existing finite element computer programs, demonstrating how to implement and use the technology. Detailed programming examples and datasets are included to impart a thorough knowledge and understanding of the material. Provides examples of different applications, showing the reader how to implement isogeometric models Addresses readers on both sides of the CAD/FEA divide Describes Non-Uniform Rational B-Splines (NURBS) basis functions
Isogeometric Analysis and Shape Optimal Design of Shell Structures
Topology Optimization
Author: Martin Philip Bendsoe
Publisher: Springer Science & Business Media
ISBN: 3662050862
Category : Mathematics
Languages : en
Pages : 381
Book Description
The topology optimization method solves the basic enginee- ring problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design which is concerned with the optimization of structural topology, shape and material. This edition, has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state-of-the-art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also materials and MEMS.
Publisher: Springer Science & Business Media
ISBN: 3662050862
Category : Mathematics
Languages : en
Pages : 381
Book Description
The topology optimization method solves the basic enginee- ring problem of distributing a limited amount of material in a design space. The first edition of this book has become the standard text on optimal design which is concerned with the optimization of structural topology, shape and material. This edition, has been substantially revised and updated to reflect progress made in modelling and computational procedures. It also encompasses a comprehensive and unified description of the state-of-the-art of the so-called material distribution method, based on the use of mathematical programming and finite elements. Applications treated include not only structures but also materials and MEMS.
High Performance and Optimum Design of Structures and Materials V
Author: S. Hernandez
Publisher: WIT Press
ISBN: 1784664715
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. The included contributions highlight the latest developments in design and manufacturing. Most high-performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis is placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management. The book also addresses the topic of design optimisation. Contributions cover numerical methods, different optimisation techniques and new software. Optimisation problems include those related to the size, shape and topology of structures and materials. Optimisation techniques have much to offer to those involved in the design of new industrial products, as the appearance of powerful commercial computer codes has created a fertile field for the incorporation of optimisation in the design process of all engineering disciplines. The performance of structures under shock and impact loads is another area covered. The increasing need to protect civilian infrastructure and industrial facilities against unintentional loads arising from accidental impact and explosion events as well as terrorist attacks is reflected in the sustained interest worldwide. While advances have been made in recent decades, many challenges remain, such as developing more effective and efficient blast and impact mitigation approaches or assessing the uncertainties associated with large and small scale testing and validation of numerical and analytical models. The overall aim is to move towards a better understanding of the critical issues relating to the testing behaviour, modelling and analyses of protective structures against blast and impact loading. The studies contained in this volume were presented at the International Conference on High Performance and Optimum Structures and Materials Encompassing Shock and Impact Loading and address issues involving advanced types of structures, particularly those based on new concepts, and shock and impact resistance.
Publisher: WIT Press
ISBN: 1784664715
Category : Technology & Engineering
Languages : en
Pages : 210
Book Description
The use of novel materials and new structural concepts nowadays is not restricted to highly technical areas like aerospace, aeronautical applications or the automotive industry, but affects all engineering fields including those such as civil engineering and architecture. The included contributions highlight the latest developments in design and manufacturing. Most high-performance structures require the development of a generation of new materials, which can more easily resist a range of external stimuli or react in a non-conventional manner. Particular emphasis is placed on intelligent structures and materials as well as the application of computational methods for their modelling, control and management. The book also addresses the topic of design optimisation. Contributions cover numerical methods, different optimisation techniques and new software. Optimisation problems include those related to the size, shape and topology of structures and materials. Optimisation techniques have much to offer to those involved in the design of new industrial products, as the appearance of powerful commercial computer codes has created a fertile field for the incorporation of optimisation in the design process of all engineering disciplines. The performance of structures under shock and impact loads is another area covered. The increasing need to protect civilian infrastructure and industrial facilities against unintentional loads arising from accidental impact and explosion events as well as terrorist attacks is reflected in the sustained interest worldwide. While advances have been made in recent decades, many challenges remain, such as developing more effective and efficient blast and impact mitigation approaches or assessing the uncertainties associated with large and small scale testing and validation of numerical and analytical models. The overall aim is to move towards a better understanding of the critical issues relating to the testing behaviour, modelling and analyses of protective structures against blast and impact loading. The studies contained in this volume were presented at the International Conference on High Performance and Optimum Structures and Materials Encompassing Shock and Impact Loading and address issues involving advanced types of structures, particularly those based on new concepts, and shock and impact resistance.
Isogeometric Topology Optimization
Author: Jie Gao
Publisher: Springer Nature
ISBN: 9811917701
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book provides a systematic description about the development of Isogeometric Topology Optimization (ITO) method using the density, and then addresses the effectiveness and efficiency of the ITO method on several design problems, including multi-material structures, stress-minimization structures, piezoelectric structures and also with the uniform manufacturability, ultra-lightweight architected materials with extreme bulk/shear moduli, auxetic metamaterials and auxetic meta-composites with the NPRs behavior in microstructures. A detailed MATLAB implementation of the ITO method with an in-house code “IgaTop” is also presented.
Publisher: Springer Nature
ISBN: 9811917701
Category : Technology & Engineering
Languages : en
Pages : 230
Book Description
This book provides a systematic description about the development of Isogeometric Topology Optimization (ITO) method using the density, and then addresses the effectiveness and efficiency of the ITO method on several design problems, including multi-material structures, stress-minimization structures, piezoelectric structures and also with the uniform manufacturability, ultra-lightweight architected materials with extreme bulk/shear moduli, auxetic metamaterials and auxetic meta-composites with the NPRs behavior in microstructures. A detailed MATLAB implementation of the ITO method with an in-house code “IgaTop” is also presented.
Mathematics of Surfaces XIII
Author: Edwin R. Hancock
Publisher: Springer Science & Business Media
ISBN: 3642035957
Category : Computers
Languages : en
Pages : 418
Book Description
This book constitutes the refereed proceedings of the 13th IMA International Conference on the Mathematics of Surfaces held in York, UK in September 2009. The papers in the present volume include seven invited papers, as well as 16 submitted papers. The topics covered include subdivision schemes and their continuity, polar patchworks, compressive algorithms for PDEs, surface invariant functions, swept volume parameterization, Willmore flow, computational conformal geometry, heat kernel embeddings, and self-organizing maps on manifolds, mesh and manifold construction, editing, flattening, morphing and interrogation, dissection of planar shapes, symmetry processing, morphable models, computation of isophotes, point membership classification and vertex blends. Surface types considered encompass polygon meshes as well as parametric and implicit surfaces.
Publisher: Springer Science & Business Media
ISBN: 3642035957
Category : Computers
Languages : en
Pages : 418
Book Description
This book constitutes the refereed proceedings of the 13th IMA International Conference on the Mathematics of Surfaces held in York, UK in September 2009. The papers in the present volume include seven invited papers, as well as 16 submitted papers. The topics covered include subdivision schemes and their continuity, polar patchworks, compressive algorithms for PDEs, surface invariant functions, swept volume parameterization, Willmore flow, computational conformal geometry, heat kernel embeddings, and self-organizing maps on manifolds, mesh and manifold construction, editing, flattening, morphing and interrogation, dissection of planar shapes, symmetry processing, morphable models, computation of isophotes, point membership classification and vertex blends. Surface types considered encompass polygon meshes as well as parametric and implicit surfaces.
Isogeometric Optimal Design
Author: Seonho Cho
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 0
Book Description
Presents a unified approach for combining CAD, CAE, sensitivity analysis, and optimization, helping readers to understand the theories of the isogeometric finite element method and shape optimization systematically and accurately. • Presents an emerging concept connecting the research topics of Isogeometric Analysis and Shape Optimal Design • Imparts the ability to integrate the computational description of design with computational analysis tools within a single unified framework • Written by authors at the cutting edge of research and application, as well as a top expert in sensitivity analysis • Spans fundamentals of optimization and analysis in addition to providing concrete application examples • Includes sample codes within the book implementing both Isogeometric Analysis and Isogeometric Shape Optimization as an accompaniment to the examples given
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 0
Book Description
Presents a unified approach for combining CAD, CAE, sensitivity analysis, and optimization, helping readers to understand the theories of the isogeometric finite element method and shape optimization systematically and accurately. • Presents an emerging concept connecting the research topics of Isogeometric Analysis and Shape Optimal Design • Imparts the ability to integrate the computational description of design with computational analysis tools within a single unified framework • Written by authors at the cutting edge of research and application, as well as a top expert in sensitivity analysis • Spans fundamentals of optimization and analysis in addition to providing concrete application examples • Includes sample codes within the book implementing both Isogeometric Analysis and Isogeometric Shape Optimization as an accompaniment to the examples given
Shape Optimization Problems
Author: Hideyuki Azegami
Publisher: Springer Nature
ISBN: 9811576181
Category : Mathematics
Languages : en
Pages : 646
Book Description
This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.
Publisher: Springer Nature
ISBN: 9811576181
Category : Mathematics
Languages : en
Pages : 646
Book Description
This book provides theories on non-parametric shape optimization problems, systematically keeping in mind readers with an engineering background. Non-parametric shape optimization problems are defined as problems of finding the shapes of domains in which boundary value problems of partial differential equations are defined. In these problems, optimum shapes are obtained from an arbitrary form without any geometrical parameters previously assigned. In particular, problems in which the optimum shape is sought by making a hole in domain are called topology optimization problems. Moreover, a problem in which the optimum shape is obtained based on domain variation is referred to as a shape optimization problem of domain variation type, or a shape optimization problem in a limited sense. Software has been developed to solve these problems, and it is being used to seek practical optimum shapes. However, there are no books explaining such theories beginning with their foundations. The structure of the book is shown in the Preface. The theorems are built up using mathematical results. Therefore, a mathematical style is introduced, consisting of definitions and theorems to summarize the key points. This method of expression is advanced as provable facts are clearly shown. If something to be investigated is contained in the framework of mathematics, setting up a theory using theorems prepared by great mathematicians is thought to be an extremely effective approach. However, mathematics attempts to heighten the level of abstraction in order to understand many things in a unified fashion. This characteristic may baffle readers with an engineering background. Hence in this book, an attempt has been made to provide explanations in engineering terms, with examples from mechanics, after accurately denoting the provable facts using definitions and theorems.
IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials
Author: Martin Philip Bendsoe
Publisher: Springer Science & Business Media
ISBN: 1402047525
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
This volume offers edited papers presented at the IUTAM-Symposium Topological design optimization of structures, machines and materials - status and perspectives, October 2005. The papers cover the application of topological design optimization to fluid-solid interaction problems, acoustics problems, and to problems in biomechanics, as well as to other multiphysics problems. Also in focus are new basic modelling paradigms, covering new geometry modelling such as level-set methods and topological derivatives.
Publisher: Springer Science & Business Media
ISBN: 1402047525
Category : Technology & Engineering
Languages : en
Pages : 602
Book Description
This volume offers edited papers presented at the IUTAM-Symposium Topological design optimization of structures, machines and materials - status and perspectives, October 2005. The papers cover the application of topological design optimization to fluid-solid interaction problems, acoustics problems, and to problems in biomechanics, as well as to other multiphysics problems. Also in focus are new basic modelling paradigms, covering new geometry modelling such as level-set methods and topological derivatives.
Elements of Structural Optimization
Author: Raphael T. Haftka
Publisher: Springer Science & Business Media
ISBN: 9401578621
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
The field of structural optimization is still a relatively new field undergoing rapid changes in methods and focus. Until recently there was a severe imbalance between the enormous amount of literature on the subject, and the paucity of applications to practical design problems. This imbalance is being gradually redressed now. There is still no shortage of new publications, but there are also exciting applications of the methods of structural optimizations in the automotive, aerospace, civil engineering, machine design and other engineering fields. As a result of the growing pace of applications, research into structural optimization methods is increasingly driven by real-life problems. Most engineers who design structures employ complex general-purpose software packages for structural analysis. Often they do not have any access to the source the details of program, and even more frequently they have only scant knowledge of the structural analysis algorithms used in this software packages. Therefore the major challenge faced by researchers in structural optimization is to develop methods that are suitable for use with such software packages. Another major challenge is the high computational cost associated with the analysis of many complex real-life problems. In many cases the engineer who has the task of designing a structure cannot afford to analyze it more than a handful of times.
Publisher: Springer Science & Business Media
ISBN: 9401578621
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
The field of structural optimization is still a relatively new field undergoing rapid changes in methods and focus. Until recently there was a severe imbalance between the enormous amount of literature on the subject, and the paucity of applications to practical design problems. This imbalance is being gradually redressed now. There is still no shortage of new publications, but there are also exciting applications of the methods of structural optimizations in the automotive, aerospace, civil engineering, machine design and other engineering fields. As a result of the growing pace of applications, research into structural optimization methods is increasingly driven by real-life problems. Most engineers who design structures employ complex general-purpose software packages for structural analysis. Often they do not have any access to the source the details of program, and even more frequently they have only scant knowledge of the structural analysis algorithms used in this software packages. Therefore the major challenge faced by researchers in structural optimization is to develop methods that are suitable for use with such software packages. Another major challenge is the high computational cost associated with the analysis of many complex real-life problems. In many cases the engineer who has the task of designing a structure cannot afford to analyze it more than a handful of times.