Investigations of Field Dynamics in Laser Plasmas with Proton Imaging PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Investigations of Field Dynamics in Laser Plasmas with Proton Imaging PDF full book. Access full book title Investigations of Field Dynamics in Laser Plasmas with Proton Imaging by Thomas Sokollik. Download full books in PDF and EPUB format.

Investigations of Field Dynamics in Laser Plasmas with Proton Imaging

Investigations of Field Dynamics in Laser Plasmas with Proton Imaging PDF Author: Thomas Sokollik
Publisher: Springer Science & Business Media
ISBN: 3642150403
Category : Science
Languages : en
Pages : 126

Book Description
Laser-driven proton beams are still in their infancy but already have some outstanding attributes compared to those produced in conventional accelerators. One such attribute is the typically low beam emittance. This allows excellent resolution in imaging applications like proton radiography. This thesis describes a novel imaging technique - the proton streak camera - that the author developed and first used to measure both the spatial and temporal evolution of ultra-strong electrical fields in laser-driven plasmas. Such investigations are of paramount importance for the understanding of laser-plasma interactions and, thus, for optimization of laser-driven particle acceleration. In particular, the present work investigated micrometer-sized spherical targets after laser irradiation. The confined geometry of plasmas and fields was found to influence the kinetic energy and spatial distribution of accelerated ions. This could be shown both in experimental radiography images and and in numerical simulations, one of which was selected for the cover page of Physical Review Letters.

Investigations of Field Dynamics in Laser Plasmas with Proton Imaging

Investigations of Field Dynamics in Laser Plasmas with Proton Imaging PDF Author: Thomas Sokollik
Publisher: Springer Science & Business Media
ISBN: 3642150403
Category : Science
Languages : en
Pages : 126

Book Description
Laser-driven proton beams are still in their infancy but already have some outstanding attributes compared to those produced in conventional accelerators. One such attribute is the typically low beam emittance. This allows excellent resolution in imaging applications like proton radiography. This thesis describes a novel imaging technique - the proton streak camera - that the author developed and first used to measure both the spatial and temporal evolution of ultra-strong electrical fields in laser-driven plasmas. Such investigations are of paramount importance for the understanding of laser-plasma interactions and, thus, for optimization of laser-driven particle acceleration. In particular, the present work investigated micrometer-sized spherical targets after laser irradiation. The confined geometry of plasmas and fields was found to influence the kinetic energy and spatial distribution of accelerated ions. This could be shown both in experimental radiography images and and in numerical simulations, one of which was selected for the cover page of Physical Review Letters.

Imaging of Plasmas Using Proton Beams Generated by Ultra-Intense Laser Pulses

Imaging of Plasmas Using Proton Beams Generated by Ultra-Intense Laser Pulses PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Proton imaging is a diagnostic with enormous potential for the investigation of fundamental plasma physics problems which were impossible to explore up to now. By using this diagnostic, for the first time the measurement of transient electric fields in dense plasmas has been obtained, determining their evolution on a picosecond scale with micrometric spatial resolution. The data is of great relevance to Inertial Confinement Fusion both in the conventional and Fast Ignitor approach. Detailed analysis and modeling is presently undergoing.

Collective Charged Particle Dynamics in Relativistically Transparent Laser-plasma Interactions

Collective Charged Particle Dynamics in Relativistically Transparent Laser-plasma Interactions PDF Author: Bruno González-Izquierdo
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
This thesis reports on experimental and numerical investigations of the collective response of electrons and ions to the interaction of ultra-intense (1020 Wcm−2) laser with ultra-thin (nanometre scale) foils undergoing expansion and relativistic induced transparency. The onset of this relativistic mechanism is also characterised and studied in detail. This new insight into relativistic transparency is an important step towards optical control of charged particle dynamics in laser driven dense plasma sources and in its potential applications; including ion and radiation source development.The experimental and numerical investigations exploring the onset and the underpinning physics of the relativistic transparency have focused on its dependency on the target areal density, laser intensity and polarisation. The results show a maximum laser transmission for the thinnest targets investigated, which decreases exponentially with increasing target thickness. The same trend is obtained for linearly and circularly polarised laser light. However, for a given target thickness, the linear polarisation case exhibits a significantly higher transmission fraction, with respect to the circular polarisation case, due to additional electron heating and expansion. Moreover, it is shown that for the thinnest targets, once they become relativistically transparent, the transmitted light fraction increases rapidly as the laser intensity increases. The increasing rate is shown to be more pronounced in the thinnest targets investigated. This is diagnosed by measurement of both the fundamental and second harmonic wavelengths. An alternative approach, based on numerical measurement of the critical surface velocity, as a function of time, for various target thickness, and comparing it with corresponding analytical models is also proposed. The onset of relativistic induced transparency is found to curb the radiation pressure effciency of the charged particle acceleration mechanism.Investigations of the collective response of electrons in ultra-thin foils undergoing transparency show that a 'relativistic plasma aperture' is generated by intense laser light in this regime, resulting in the fundamental optical phenomenon of diffraction. It is numerically found that the plasma electrons collectively respond to the resulting laser near-field diffraction pattern, resulting in a beam of energetic electrons with spatial-intensity distribution, related to this diffraction structure, which can be controlled by variation of the laser pulse parameters,and in turn the onset of relativistic transparency. Additionally, it is shown that static electron beam, and induced magnetic field, structures can be made to rotate at fixed or variable angular frequencies depending on the degree of ellipticity in the laser polarisation. The predicted electron beam distributions using the 'relativistic plasma aperture' concept are verified experimentally.Understanding the collective response of plasma electrons to transparency and how this affects the subsequent acceleration of ions is highly important to the interpretation of experiments exploring ion acceleration employing ultra-thin foils. Control of this collective electron motion, and thus the resultant electrostatic fields, could enable unprecedented control over the spatial-intensity distribution of laser-driven ion acceleration. The results presented in this thesis show that in ultra-thin foils undergoing transparency the electron dynamics are mapped onto the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated that the degree of ellipticity of the laser polarisation defines the spatial-intensity distribution of the proton beam profile and can therefore be used to control it. This demonstration of dynamic optical control of structures within the spatial-intensity distribution of the beam of laser accelerated ions opens a new route to optimising the properties of these promising ion sources.

Frontiers in High Energy Density Physics

Frontiers in High Energy Density Physics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 030908637X
Category : Science
Languages : en
Pages : 177

Book Description
Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 488

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

Laser-plasma Investigations Employing Laser-driven Proton Probes

Laser-plasma Investigations Employing Laser-driven Proton Probes PDF Author: Lorenzo Romagnani
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Collective Phenomena In Macroscopic Systems - Proceedings Of The Workshop

Collective Phenomena In Macroscopic Systems - Proceedings Of The Workshop PDF Author: Roberto Pozzoli
Publisher: World Scientific
ISBN: 9814475327
Category : Science
Languages : en
Pages : 316

Book Description
The contributions in this volume discuss numerous hot topics of interdisciplinary interest in plasma physics, astrophysics, and fluid dynamics. It collects the articles presented at a Workshop that has gathered world experts with a broad spectrum of research interests.

Proceedings of the Workshop Collective Phenomena in Macroscopic Systems, Villa Olmo, Como, Italy, 4 - 6 December 2006

Proceedings of the Workshop Collective Phenomena in Macroscopic Systems, Villa Olmo, Como, Italy, 4 - 6 December 2006 PDF Author: Giuseppe Bertin
Publisher: World Scientific
ISBN: 9812707050
Category : Science
Languages : en
Pages : 316

Book Description
The contributions in this volume discuss numerous hot topics of interdisciplinary interest in plasma physics, astrophysics, and fluid dynamics. It collects the articles presented at a Workshop that has gathered world experts with a broad spectrum of research interests.

MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch

MOSFET Technologies for Double-Pole Four-Throw Radio-Frequency Switch PDF Author: Viranjay M. Srivastava
Publisher: Springer Science & Business Media
ISBN: 3319011650
Category : Technology & Engineering
Languages : en
Pages : 209

Book Description
This book provides analysis and discusses the design of various MOSFET technologies which are used for the design of Double-Pole Four-Throw (DP4T) RF switches for next generation communication systems. The authors discuss the design of the (DP4T) RF switch by using the Double-Gate (DG) MOSFET, as well as the Cylindrical Surrounding double-gate (CSDG) MOSFET. The effect of HFO2 (high dielectric material) in the design of DG MOSFET and CSDG MOSFET is also explored. Coverage includes comparison of Single-gate MOSFET and Double-gate MOSFET switching parameters, as well as testing of MOSFETs parameters using image acquisition.

Graduate Studies

Graduate Studies PDF Author:
Publisher:
ISBN:
Category : Research
Languages : en
Pages : 1024

Book Description