Investigation of Three-Dimensional Shock-Wave/Turbulent Boundary Layer Interactions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Investigation of Three-Dimensional Shock-Wave/Turbulent Boundary Layer Interactions PDF full book. Access full book title Investigation of Three-Dimensional Shock-Wave/Turbulent Boundary Layer Interactions by Morgan Lee Funderburk. Download full books in PDF and EPUB format.

Investigation of Three-Dimensional Shock-Wave/Turbulent Boundary Layer Interactions

Investigation of Three-Dimensional Shock-Wave/Turbulent Boundary Layer Interactions PDF Author: Morgan Lee Funderburk
Publisher:
ISBN:
Category :
Languages : en
Pages : 325

Book Description


Investigation of Three-Dimensional Shock-Wave/Turbulent Boundary Layer Interactions

Investigation of Three-Dimensional Shock-Wave/Turbulent Boundary Layer Interactions PDF Author: Morgan Lee Funderburk
Publisher:
ISBN:
Category :
Languages : en
Pages : 325

Book Description


Three-dimensional Shock Wave-turbulent Boundary Layer Interactions at Mach 6

Three-dimensional Shock Wave-turbulent Boundary Layer Interactions at Mach 6 PDF Author: C. Herbert Law
Publisher:
ISBN:
Category : Aerodynamic heating
Languages : en
Pages : 52

Book Description
Experimental results of an investigation of the three-dimensional interaction between a skewed shock wave and a turbulent boundary layer are presented. Surface pressure and heat transfer distributions and oil flow photographs were obtained at a freestream Mach number of 5.85 and two Reynolds numbers of ten and twenty million per foot. The model configuration consisted of a shock generator mounted perpendicularly to a flat plate. The shock generator leading edge was sharp and nonswept and intersected the flat plate surface about 8.5 inches downstream of the flat plate leading edge. The shock generator surface was 7.55 inches long and 3 inches high and its angle to the freestream flow was adjusted from 4 to 20 degrees. The generated shock waves were of sufficient strength to produce turbulent boundary layer separation on the flat plate surface.

Theoretical Investigation of Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions. Part 2

Theoretical Investigation of Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions. Part 2 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 71

Book Description
The focus of the research effort is the understanding of three-dimensional shock wave-turbulent boundary layer interactions. The approach uses the full mean compressible Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin and Lomax. During the present year of the research effort, the three-dimensional shock boundary layer interaction generated by a 10 deg sharp fin has been computed at Mach 3 for a Reynolds number 280000. These results, together with previous computations of the same configuration at Reynolds number = 930000, are compared with experimental data for pitot pressure and yaw angle. The agreement with the experimental data is good, and the theory accurately predicts the recovery of the boundary layer downstream of the interaction of Reynolds number = 280000. The computed flowfield is employed to analyze the structure of the 3-D interaction through contour plots of flow variables. Also, during the present year, the investigation of the 2-D turbulent supersonic compression corner at Mach 3 was completed. The relaxation modification to the Baldwin-Lomax model was found to yield reasonably accurate predictions of the upstream propagation of the surface for the Reynolds number range investigated. An additional computation at Mach 2 was performed, and the results were in general in agreement with the previous conclusions. (Author).

Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions PDF Author: Holger Babinsky
Publisher: Cambridge University Press
ISBN: 1139498649
Category : Technology & Engineering
Languages : en
Pages : 481

Book Description
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

Theoretical Investigation of Three-Dimensional Shock Wave Turbulent Boundary Layer Interactions

Theoretical Investigation of Three-Dimensional Shock Wave Turbulent Boundary Layer Interactions PDF Author: D. D. Knight
Publisher:
ISBN:
Category :
Languages : en
Pages : 52

Book Description
The focus of the research effort is the understanding of three-dimensional shock wave-turbulent boundary layer interactions. The approach uses the full mean compressible Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin and Lomax. This year's principle accomplishments are (1) the Baldwin-Lomax model was evaluated for a series of non-separated two-dimensional turbulent boundary layers. (2) the 3-D Navier-Stokes codes was rewritten innto CYBER 200 FORTRAN. (3) the computed results for the 3-D sharp fin alpha sub g = 10 deg were compared with the results of a separate calculation by C. Horstmann using the k-epsilon turbulence model, and the experimental data of McClure and Dolling. and (4) the 3-D sharp fin at alpha sub g =20 deg was computed, and the results compared with the available experimental data. The examination of the flowfield structure of the 3-D sharp fin at alphaa sub g = 20 deg was initiated. Originator supplied keywords include: High speed flows; Viscous-inviscid interactions; Shock-boundary layer interactions; Computational fluid dynamics; Navier-Stokes equations; and Turbulence.

Experimental Investigation of Three-Dimensional Shock Wave Turbulent Boundary Layer Interaction: An Exploratory Study of Blunt Fin-Induced Flows

Experimental Investigation of Three-Dimensional Shock Wave Turbulent Boundary Layer Interaction: An Exploratory Study of Blunt Fin-Induced Flows PDF Author: David S. Dolling
Publisher:
ISBN:
Category :
Languages : en
Pages : 75

Book Description
An experimental study of three-dimensional (3-D) shock wave turbulent boundary layer interaction has been carried out. Interactions generated by fin models having sharp and hemi-cylindrically blunted leading edges have been studied. The emphasis in this particular study was twofold. First, the influence of incoming turbulent boundary layer thickness delta on the streamwise, spanwise and vertical scaling of the interaction was examined. Turbulent boundary layers varying in thickness from .127 cm (.05 in.) to 2.27 cm (0.89 in.) were used. In addition, a study has been conducted to examine the effects of the ratio D/delta (where D is the blunt fin leading edge diameter) on the interaction properties and scaling. Second, an investigation has been started to examine the unsteady shock wave-boundary layer structure and the resulting high frequency, large amplitude pressure fluctuations which occur ahead of and around the blunt fin leading edge. This is an area which in the past has been largely ignored, yet has important implications, since it is not clear that any mean surface property or flowfield measurements have any real physical significant. To date, measurement techniques and computer software have been developed and exploratory measurements made in the undisturbed turbulent boundary layer and also on the plane of symmetry ahead of the blunt fin.

An Experimental Investigation of a Three-dimensional Shock Wave-turbulent Boundary Layer Interaction in Supersonic Flow

An Experimental Investigation of a Three-dimensional Shock Wave-turbulent Boundary Layer Interaction in Supersonic Flow PDF Author: John Warren Welch
Publisher:
ISBN:
Category : Aerodynamics, Supersonic
Languages : en
Pages : 348

Book Description


Theoretical Investigation of Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions

Theoretical Investigation of Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions PDF Author: Doyle D. Knight
Publisher:
ISBN:
Category :
Languages : en
Pages : 50

Book Description
The focus of the research effort is the understanding of three-dimensional shock wave-turbulent boundary layer interactions. The approach uses the full mean compressible Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin and Lomax. During the present year of the research effort, the three-dimensional shock boundary layer interaction generated by a 10 deg sharp fin has been computed at Mach 3 for a Reynolds number 280000. These results, together with previous computations of the same configuration at Reynolds number = 930000, are compared with experimental data for pitot pressure and yaw angle. The agreement with the experimental data is good, and the theory accurately predicts the recovery of the boundary layer downstream of the interaction of Reynolds number = 280000. The computed flowfield is employed to analyze the structure of the 3-D interaction through contour plots of flow variables. Also, during the present year, the investigation of the 2-D turbulent supersonic compression corner at Mach 3 was completed. The relaxation modification to the Baldwin-Lomax model was found to yield reasonably accurate predictions of the upstream propagation of the surface for the Reynolds number range investigated. An additional computation at Mach 2 was performed, and the results were in general in agreement with the previous conclusions. (Author).

Documentation of Two- and Three-dimensional Hypersonic Shock Wave/turbulent Boundary Layer Interaction Flows

Documentation of Two- and Three-dimensional Hypersonic Shock Wave/turbulent Boundary Layer Interaction Flows PDF Author: Marvin I. Kussoy
Publisher:
ISBN:
Category : Aerodynamics, Hypersonic
Languages : en
Pages : 32

Book Description


Theoretical Investigation of Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions. Part 4

Theoretical Investigation of Three-Dimensional Shock Wave-Turbulent Boundary Layer Interactions. Part 4 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 26

Book Description
A theoretical model consists of the Reynolds-averaged 3-D compressible Navier-Stokes equations, with turbulence incorporated using the algebraic turbulent eddy viscosity model of Baldwin and Lomax, This year research efforts focused on both 2-D and 3-D turbulent interactions. A theoretical model was examined for a series of separated 2-D compression corner flows at Mach 2 and 3. Calculations were performed for four separate compression corners using 2-D compressible Navier-Stodes conde with MacCormack's hybrid algorithm. Results were compared to earlier computations using the Beam-Warming algorithm, and recent experiment data for turbulent Reynolds stresses. Calculated Reynolds stresses were observed to differ significantly from experimental measurements due to the inability of the turbulence model to incorporate the multiple scale effects of the turbulence structure downstream of reattachment. Computed results using the MacCormack hybrid algorithm were observed to be insensitive to the Courant number. The 3-D turbulence interactions research concentrated on the 3-D sharp fin and on the 3-D swept compression corner. In the former case, the computed flowfield for the 20 deg sharp fin at Mach 3 and a Reynolds number of 930,000 was compared with the calculated results of Horstman (who used the Jones-Launder turbulence model) and experimental data of the Princeton Gas Dynamics Lab. Overall comparison with experiment was very good.