Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test PDF full book. Access full book title Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test by Fivman Marpaung. Download full books in PDF and EPUB format.

Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test

Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test PDF Author: Fivman Marpaung
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250°F) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory "dynamic fracture conductivity" tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150°F. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test

Investigation of the Effect of Gel Residue on Hydraulic Fracture Conductivity Using Dynamic Fracture Conductivity Test PDF Author: Fivman Marpaung
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The key to producing gas from tight gas reservoirs is to create a long, highly conductive flow path, via the placement of a hydraulic fracture, to stimulate flow from the reservoir to the wellbore. Viscous fluid is used to transport proppant into the fracture. However, these same viscous fluids need to break to a thin fluid after the treatment is over so that the fracture fluid can be cleaned up. In shallower, lower temperature (less than 250°F) reservoirs, the choice of a fracture fluid is very critical to the success of the treatment. Current hydraulic fracturing methods in unconventional tight gas reservoirs have been developed largely through ad-hoc application of low-cost water fracs, with little optimization of the process. It seems clear that some of the standard tests and models are missing some of the physics of the fracturing process in low-permeability environments. A series of the extensive laboratory "dynamic fracture conductivity" tests have been conducted. Dynamic fracture conductivity is created when proppant slurry is pumped into a hydraulic fracture in low permeability rock. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially, we pump proppant/ fracturing fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. Test results indicate that increasing gel concentration decreases retained fracture conductivity for a constant gas flow rate and decreasing gas flow rate decreases retained fracture conductivity. Without breaker, the damaging effect of viscous hydraulic fracturing fluids on the conductivity of proppant packs is significant at temperature of 150°F. Static conductivity testing results in higher retained fracture conductivity when compared to dynamic conductivity testing.

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test PDF Author: Juan Correa Castro
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Unconventional gas has become an important resource to help meet our future energy demands. Although plentiful, it is difficult to produce this resource, when locked in a massive sedimentary formation. Among all unconventional gas resources, tight gas sands represent a big fraction and are often characterized by very low porosity and permeability associated with their producing formations, resulting in extremely low production rate. The low flow properties and the recovery factors of these sands make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a hydraulic fracture is to create a long, highly conductive fracture to facilitate the gas flow from the reservoir to the wellbore to obtain commercial production rates. Fracture conductivity depends on several factors, such as like the damage created by the gel during the treatment and the gel clean-up after the treatment. This research is focused on predicting more accurately the fracture conductivity, the gel damage created in fractures, and the fracture cleanup after a hydraulic fracture treatment under certain pressure and temperature conditions. Parameters that alter fracture conductivity, such as polymer concentration, breaker concentration and gas flow rate, are also examined in this study. A series of experiments, using a procedure of "dynamical fracture conductivity test," were carried out. This procedure simulates the proppant/frac fluid slurries flow into the fractures in a low-permeability rock, as it occurs in the field, using different combinations of polymer and breaker concentrations under reservoirs conditions. The result of this study provides the basis to optimize the fracturing fluids and the polymer loading at different reservoir conditions, which may result in a clean and conductive fracture. Success in improving this process will help to decrease capital expenditures and increase the production in unconventional tight gas reservoirs.

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test

Experimental Investigation of Propped Fracture Conductivity in Tight Gas Reservoirs Using The Dynamic Conductivity Test PDF Author: Jose Domingo Romero Lugo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Hydraulic Fracturing stimulation technology is used to increase the amount of oil and gas produced from low permeability reservoirs. The primary objective of the process is to increase the conductivity of the reservoir by the creation of fractures deep into the formation, changing the flow pattern from radial to linear flow. The dynamic conductivity test was used for this research to evaluate the effect of closure stress, temperature, proppant concentration, and flow back rates on fracture conductivity. The objective of performing a dynamic conductivity test is to be able to mimic actual field conditions by pumping fracturing fluid/proppant slurry fluid into a conductivity cell, and applying closure stress afterwards. In addition, a factorial design was implemented in order to determine the main effect of each of the investigated factors and to minimize the number of experimental runs. Due to the stochastic nature of the dynamic conductivity test, each experiment was repeated several times to evaluate the consistency of the results. Experimental results indicate that the increase in closure stress has a detrimental effect on fracture conductivity. This effect can be attributed to the reduction in fracture width as closure stress was increased. Moreover, the formation of channels at low proppant concentration plays a significant role in determining the final conductivity of a fracture. The presence of these channels created an additional flow path for nitrogen, resulting in a significant increase in the conductivity of the fracture. In addition, experiments performed at high temperatures and stresses exhibited a reduction in fracture conductivity. The formation of a polymer cake due to unbroken gel dried up at high temperatures further impeded the propped conductivity. The effect of nitrogen rate was observed to be inversely proportional to fracture conductivity. The significant reduction in fracture conductivity could possibly be due to the effect of polymer dehydration at higher flow rates and temperatures. However, there is no certainty from experimental results that this conductivity reduction is an effect that occurs in real fractures or whether it is an effect that is only significant in laboratory conditions. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/148364

Development, Setup and Testing of a Dynamic Hydraulic Fracture Conductivity Apparatus

Development, Setup and Testing of a Dynamic Hydraulic Fracture Conductivity Apparatus PDF Author: Potcharaporn Pongthunya
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
One of the most critical parameters in the success of a hydraulic fracturing treatment is to have sufficiently high fracture conductivity. Unbroken polymers can cause permeability impairment in the proppant pack and/or in the matrix along the fracture face. The objectives of this research project were to design and set up an experimental apparatus for dynamic fracture conductivity testing and to create a fracture conductivity test workflow standard. This entirely new dynamic fracture conductivity measurement will be used to perform extensive experiments to study fracturing fluid cleanup characteristics and investigate damage resulting from unbroken polymer gel in the proppant pack. The dynamic fracture conductivity experiment comprises two parts: pumping fracturing fluid into the cell and measuring proppant pack conductivity. I carefully designed the hydraulic fracturing laboratory to provide appropriate scaling of the field conditions experimentally. The specifications for each apparatus were carefully considered with flexibility for further studies and the capability of each apparatus was defined. I generated comprehensive experimental procedures for each experiment stage. By following the procedure, the experiment can run smoothly. Most of dry runs and experiments performed with sandstone were successful.

Fossil Energy Update

Fossil Energy Update PDF Author:
Publisher:
ISBN:
Category : Fossil fuels
Languages : en
Pages : 952

Book Description


Proceedings ... SPE Annual Technical Conference and Exhibition

Proceedings ... SPE Annual Technical Conference and Exhibition PDF Author: Society of Petroleum Engineers (U.S.). Technical Conference and Exhibition
Publisher:
ISBN:
Category : Petroleum
Languages : en
Pages : 828

Book Description


Advances in Fluid-Solid Coupling Processes between Fractures and Porous Rocks: Experimental and Numerical Investigation

Advances in Fluid-Solid Coupling Processes between Fractures and Porous Rocks: Experimental and Numerical Investigation PDF Author: Shiming Wei
Publisher: Frontiers Media SA
ISBN: 2832541658
Category : Science
Languages : en
Pages : 122

Book Description
Hydraulic fracturing is the key measure for improving recovery of unconventional oil and gas reservoirs. Prediction of fracture morphology and productivity after fracturing is critical for fracturing design and optimization. The hydraulic fracturing process is to open porous rocks by artificially injecting highly compressed fluid, and the hydraulic fracture will be closed under the compaction of in-situ stress during the production process. In this regard, hydraulic fracturing and production processes are both fluid-solid coupling processes involving fractures and porous rocks. This Research Topic aims to gather the latest studies addressing how to improve the prediction accuracy of hydraulic fracturing morphology and post-fracturing productivity through experimental and numerical investigation. The experimental research shall underline hydraulic fracturing and fracture conductivity experiments and associated experimental methods, while the numerical research shall pay particular attention to discrete fracture network models, including the calculation efficiency and accuracy as well as the applicability.

Meta-analysis of Hydraulic Fracture Conductivity Data

Meta-analysis of Hydraulic Fracture Conductivity Data PDF Author: Mohammed Rashnur Rahman
Publisher:
ISBN:
Category : Hydraulic fracturing
Languages : en
Pages : 320

Book Description
Previous empirical models of propped fracture conductivity are based either on data sourced from single investigations or on data not in the public domain. In this work, statistically rigorous models of propped fracture conductivity are developed using a database of fracture conductivity experiments reported in technical literature over the last 40 years. The database contains the results from about 2700 experimental runs. Propped fracture conductivity is the dependent variable and proppant types, mesh size, proppant concentration, formation hardness, closure stress, formation temperature, and polymer concentration are the independent variables. The mother database is partitioned into subsets; that is different databases with each daughter database having complete information in relation to the dependent and independent variables. As a result, the number of independent variables included in the daughter databases varied from three to six. Seventy percent of the data was used to develop the models while 30% of the data was used to validate them. First, fixed effect models were developed using regression analysis. Afterwards, three, four and five factor models were compared for two types of proppant: sand and ceramic proppant. The five factor model appeared to be the most prominent one. The analysis was further carried out using five factors of these two types of proppant. Mixed effect modeling was employed because of the disparate sources of the data and also the temporal diversity of the dataset. The mixed effect model appeared to be the better than the fixed effect model while compared the error terms. Also, because the mother database contained some missing values, two statistical imputation approaches were employed to predict the missing values which are categorical imputation and multiple imputation using chained equations. Imputations are employed because it is speculated that a model developed using a large number of data points should provide better predictions. Generally, the mean squared error (MSE) is less in the mixed effect model for sand and in the categorical imputation model for ceramic proppant. But, to be more precise on the performance of the models, model predictions were compared with an existing propped fracture conductivity model and different case histories published in literature. Subsequently, the models of this research can be arranged in order of predictive performance: multiple imputation model, mixed effect model, fixed effect/categorical imputation model. The results also indicate that mesh size, closure stress, formation hardness, and proppant concentration significantly affect fracture conductivity from a statistical point of view. Formation temperature and polymer concentration affect conductivity negatively but they were not statistically significant. Engineers will have access to a propped fracture conductivity database based on experiments reported over the past 40 years in technical literature. Engineers can use the models developed based on this database to generate statistical distributions of propped fracture conductivity for a variety of proppant characteristics and formation conditions. The models presented here are based on data from experimental investigations in different laboratories thereby reducing the bias that may be present in single laboratory investigations.

Petroleum Abstracts

Petroleum Abstracts PDF Author:
Publisher:
ISBN:
Category : Petroleum
Languages : en
Pages : 360

Book Description


Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation

Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation PDF Author: Andrea Nino Penaloza
Publisher:
ISBN:
Category :
Languages : en
Pages : 90

Book Description
Acid fracture conductivity and the effect of key variables in the etching process during acid fracturing can be assessed at the laboratory scale. This is accomplished by using an experimental apparatus that simulates acid injection fluxes comparable to those in actual acid fracture treatments. After acid etching, fracture conductivity is measured at different closure stresses. This research work presents a systematic study to investigate the effect of temperature, rock-acid contact time and initial condition of the fracture surfaces on acid fracture conductivity in the Austin Chalk formation. While temperature and rock-acid contact are variables normally studied in fracture conductivity tests, the effect of the initial condition of the fracture surface has not been extensively investigated. The experimental results showed that there is no significant difference in acid fracture conductivity at high closure stress using smooth or rough fracture surfaces. In addition, we analyzed the mechanisms of acid etching and resulting conductivity creation in the two types of fracture surfaces studied by using surface profiles. For smooth surfaces, the mechanism of conductivity creation seems connected to uneven etching of the rock and roughness generation. For rough surfaces, acid conductivity is related to smoothing and deepening of the initial features on the sample surface than by creating more roughness. Finally, we compared the experimental results with Nirode-Kruk correlation for acid fracture conductivity. The electronic version of this dissertation is accessible from http://hdl.handle.net/1969.1/149578