Investigation of Effect of Dynamic Operational Conditions on Membrane Fouling in a Membrane Enhanced Biological Phosphorus Removal Process PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Investigation of Effect of Dynamic Operational Conditions on Membrane Fouling in a Membrane Enhanced Biological Phosphorus Removal Process PDF full book. Access full book title Investigation of Effect of Dynamic Operational Conditions on Membrane Fouling in a Membrane Enhanced Biological Phosphorus Removal Process by . Download full books in PDF and EPUB format.

Investigation of Effect of Dynamic Operational Conditions on Membrane Fouling in a Membrane Enhanced Biological Phosphorus Removal Process

Investigation of Effect of Dynamic Operational Conditions on Membrane Fouling in a Membrane Enhanced Biological Phosphorus Removal Process PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The membrane bioreactor (MBR) is becoming increasingly popular for wastewater treatment, mainly due to its capability of producing high quality effluent with a relatively small footprint. However, high plant maintenance and operating costs due to membrane fouling limit the wide spread application of MBRs. Membrane fouling generally depends on the interactions between the membrane and, the activated sludge mixed liquor, which in turn, are affected by the chosen operating conditions. The present research study aimed to explore the process performance and membrane fouling in the membrane enhanced biological phosphorus removal (MEBPR) process under different operating conditions by, (1) comparing two MEBPRs operated in parallel, one with constant inflow and another with a variable inflow, and by, (2) operating the MEBPRs with different solids retention times (SRT). On-line filtration experiments were conducted simultaneously in both MEBPR systems by using test membrane modules. From the transmembrane pressure (TMP) data of the test membrane modules, it was revealed that fouling propensities of the MEBPR mixed liquors were similar in both parallel reactors under the operating conditions applied, although the fouling propensity of the aerobic mixed liquors of both reactors increased when the SRT of the reactors was reduced. Routinely monitored reactor performance data suggest that an MEBPR process with a varying inflow (dynamic operating condition) performs similarly to an MEBPR process with steady operating conditions at SRTs of 10 days and 20 days. Mixed liquor characterization tests were conducted, including critical flux, capillary suction time (CST), time to filter (TTF) and, bound and soluble extracellular polymeric substances (EPS) were quantified, to evaluate their role on membrane fouling. The tests results suggest that the inflow variation in an MEBPR process did not make a significant difference in any of the measured parameters. With decreased SRT, an increase.

Investigation of Effect of Dynamic Operational Conditions on Membrane Fouling in a Membrane Enhanced Biological Phosphorus Removal Process

Investigation of Effect of Dynamic Operational Conditions on Membrane Fouling in a Membrane Enhanced Biological Phosphorus Removal Process PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The membrane bioreactor (MBR) is becoming increasingly popular for wastewater treatment, mainly due to its capability of producing high quality effluent with a relatively small footprint. However, high plant maintenance and operating costs due to membrane fouling limit the wide spread application of MBRs. Membrane fouling generally depends on the interactions between the membrane and, the activated sludge mixed liquor, which in turn, are affected by the chosen operating conditions. The present research study aimed to explore the process performance and membrane fouling in the membrane enhanced biological phosphorus removal (MEBPR) process under different operating conditions by, (1) comparing two MEBPRs operated in parallel, one with constant inflow and another with a variable inflow, and by, (2) operating the MEBPRs with different solids retention times (SRT). On-line filtration experiments were conducted simultaneously in both MEBPR systems by using test membrane modules. From the transmembrane pressure (TMP) data of the test membrane modules, it was revealed that fouling propensities of the MEBPR mixed liquors were similar in both parallel reactors under the operating conditions applied, although the fouling propensity of the aerobic mixed liquors of both reactors increased when the SRT of the reactors was reduced. Routinely monitored reactor performance data suggest that an MEBPR process with a varying inflow (dynamic operating condition) performs similarly to an MEBPR process with steady operating conditions at SRTs of 10 days and 20 days. Mixed liquor characterization tests were conducted, including critical flux, capillary suction time (CST), time to filter (TTF) and, bound and soluble extracellular polymeric substances (EPS) were quantified, to evaluate their role on membrane fouling. The tests results suggest that the inflow variation in an MEBPR process did not make a significant difference in any of the measured parameters. With decreased SRT, an increase.

Effect of Sulphide on Enhanced Biological Phosphorus Removal

Effect of Sulphide on Enhanced Biological Phosphorus Removal PDF Author: Francisco Javier Rubio Rincon
Publisher: CRC Press
ISBN: 1351652710
Category : Technology & Engineering
Languages : en
Pages : 210

Book Description
The enhanced biological removal of phosphorus (EBPR) is a popular process due to high removal efficiency, low operational costs, and the possibility of phosphorus recovery. Nevertheless, the stability of the EBPR depends on different factors such as: temperature, pH, and the presence of toxic compounds. While extensive studies have researched the effects of temperature and pH on EBPR systems, little is known about the effects of different toxic compounds on EBPR. For example, sulphide has shown to inhibit different microbial activities in the WWTP, but the knowledge about its effects on EBPR is limited. Whereas the sulphide generated in the sewage can cause a shock effect on EBPR, the continuously exposure to sulphide potentially generated in WWTP can cause the acclimatization and adaptation of the biomass. This research suggests that sulphate reducing bacteria can proliferate in WWTP, as they are reversibly inhibited by the recirculation of sludge through anaerobic-anoxic-oxic conditions. The research enhances the understanding of the effect of sulphide on the anaerobic-oxic metabolism of PAO. It suggests that the filamentous bacteria Thiothrix caldifontis could play an important role in the biological removal of phosphorus. It questions the ability of PAO to generate energy from nitrate respiration and its use for the anoxic phosphorus uptake. Thus, the results obtained in this research can be used to understand the stability of the EBPR process under anaerobic-anoxic-oxic conditions, especially when exposed to the presence of sulphide.

Investigation of Enhanced Biological Phosphorus Removal at Different Temperatures

Investigation of Enhanced Biological Phosphorus Removal at Different Temperatures PDF Author: Liang-Ming Whang
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Book Description


Biological Phosphate Removal from Wastewaters

Biological Phosphate Removal from Wastewaters PDF Author: R. Ramadori
Publisher: Elsevier
ISBN: 1483160599
Category : Technology & Engineering
Languages : en
Pages : 405

Book Description
Biological Phosphate Removal from Wastewaters contains the proceedings of an International Association on Water Pollution Research and Control Specialized Conference held in Rome, Italy on September 28-30, 1987. Contributors review advances that have been made in the removal of biological phosphates from wastewaters, both at the fundamental scientific level and in the practical application of the process. Topics range from the fundamental microbiology and biochemistry of the enhanced biological removal of phosphate to the practical full-scale plant experiences with phosphorus removal and sludge handling from such processes. This text is comprised of 43 chapters; the first of which describes the utilization of polyphosphate as an energy reserve in Acinetobacter sp. and activated sludge. Attention then turns to metabolic control in polyphosphate-accumulating bacteria and its role in enhancing biological phosphate removal. The biochemistry and energetics of biological phosphorus removal are also considered. The next section is devoted to process modeling and includes chapters that explore the kinetics of biological excess phosphorus removal; factors affecting anaerobic stabilization during biological phosphorus removal; and the behavior of magnesium in biological phosphate removal. In the next section, bench/pilot-scale studies are presented; one of which investigated the reduction of returned phosphorus from a sludge treatment process. The book concludes with a discussion on phosphate removal mechanisms and pilot- and full-scale experiences. This book will be of interest to students, practitioners, and policymakers in water pollution control.

Investigation of Biochemical Transformations in the Enhanced Biological Phosphorus Removal Process in Laboratory-scale Reactors and a Full-scale Wastewater Treatment Plant

Investigation of Biochemical Transformations in the Enhanced Biological Phosphorus Removal Process in Laboratory-scale Reactors and a Full-scale Wastewater Treatment Plant PDF Author: Jens Kruse
Publisher:
ISBN:
Category :
Languages : en
Pages : 104

Book Description


Direct Biofiltration and Nutrient (phosphorus) Enhancement for Polymeric Ultrafiltration Membrane Fouling Control

Direct Biofiltration and Nutrient (phosphorus) Enhancement for Polymeric Ultrafiltration Membrane Fouling Control PDF Author: Ishita Rahman
Publisher:
ISBN:
Category :
Languages : en
Pages : 140

Book Description
Membrane filtration is growing in popularity as a viable technology for drinking water treatment to meet high demand and regulatory requirements. While many improvements have been made to the technology in the past decade, fouling continues to be one of the major operational challenges associated with membranes as it increases operating costs and reduces membrane life. Fouling control typically requires some form of pre-treatment. Biofiltration is a “green” technique that can minimize chemical usage and waste during water treatment and is a relatively new application as a pre-treatment for membranes. Proteins and polysaccharides (biopolymers) have been found to contribute most to fouling of low pressure polymeric membranes. Biofiltration has recently been demonstrated as an effective pre-treatment method for reducing biopolymer-associated fouling of this type of membrane (Hallé et al., 2009). Given that the concentration and composition of organic matter in water is variable, there is an opportunity to explore the applicability of this robust technology for different water types. The primary goals of this research were to assess the effectiveness of direct biofiltration in minimizing ultrafiltration polymeric (PVDF) membrane fouling and at the same time evaluate the biofilter development, biofilter performance based on organics removal potential, and the effect of phosphorus addition (as a nutrient) to the biofilter influent. A pilot-scale treatment train was constructed at the Technology Demonstration Facility at the Walkerton Clean Water Centre. It included two parallel dual media (sand/anthracite) biological filters (preceded by roughing filters), followed by an ultrafiltration membrane unit. Experiments were conducted using water from the Saugeen River (Ontario, Canada) whose primary form of carbon is humic material. The biofilters were allowed to acclimate and biofilter performance and organics removal were tested over a fourteen month period, the last four months of which were dedicated to phosphorus enhancement experiments. The membrane fouling experiments started seven months following the start-up of the biofilters, after confirmation of steady-state operation. Biofilter water samples were analyzed for natural organic matter constituents along with other water quality parameters, and biomass quantity and activity in the media were measured. Biomass activity in the biofilter media and biopolymer removal through the biofilter indicated a rapid acclimation period, and also demonstrated similar performance of the parallel biofilters during start-up and steady-state operation. The biofilters achieved 21% removal of the biopolymers on average following acclimation, while reduction of the humic fractions was not observed. A linear relationship between biopolymer removal and its concentration in the river water was observed (first-order process). Membrane fouling experiments were conducted using both untreated and biofiltered river water. The fouling rates were computed by monitoring changes in transmembrane pressure over time. Analysis of the samples with liquid chromatography-organic carbon detection confirmed the significant contribution of biopolymers to irreversible and reversible membrane fouling rates even when only present at low concentrations. During the phosphorus enhancement phase, two different phosphorus doses were fed into the influent of one of the parallel biofilters in order to achieve a target C:N:P ratio of roughly 100:10:1. Although initially (first month of the dosing period) an increase in the removal of dissolved organic carbon and ultraviolet-absorbance was observed in the phosphorus-enhanced biofilter, this was not sustained. Phosphorus addition did not affect biopolymer removal or biomass quantity and activity in the biofilter, and the membrane fouling experiments during this period did not show any significant effect of phosphorus addition.

Enhanced Biological Phosphorus Removal

Enhanced Biological Phosphorus Removal PDF Author: Laurens Welles
Publisher: CRC Press
ISBN: 9781138029477
Category : Science
Languages : en
Pages : 0

Book Description
The Enhanced Biological Phosphorus Removal (EBPR) process is a biological process for efficient phosphate removal from wastewaters through intracellular storage of polyphosphate by Phosphate-Accumulating Organisms (PAO). This thesis is dedicated to two different aspects of the EBPR process. The first part of the thesis focuses on the functional diversity of PAO clades and its influence on process performance. The second part describes the salinity effects on the metabolism of PAO and their competitors, the Glycogen-Accumulating Organisms (GAO) that do not contribute to phosphorus removal. The potential implications of sudden saline shocks in wastewater treatment systems not regularly exposed to salinity are also discussed.

Membrane Bioreactors for Wastewater Treatment

Membrane Bioreactors for Wastewater Treatment PDF Author: Thomas Stephenson
Publisher: IWA Publishing
ISBN: 1900222078
Category : Science
Languages : en
Pages : 194

Book Description
The book covers the subject of membrane bioreactors (MBR) for wastewater treatment, dealing with municipal as well as industrial wastewaters. The book details the 3 types of MBR available and discusses the science behind the technology, their design features, operation, applications, advantages, limitations, performance, current research activities and cost. As the demand for wastewater treatment, recycling and re-use technologies increases, it is envisaged that the membrane separation bioreactor will corner the market. Contents Membrane Fundamentals Biological Fundamentals Biomass Separation Membrane Bioreactors Membrane Aeration and Extractive Bioreactors Commercial Membrane Bioreactor Systems Membrane Bioreactor Applications Case Studies

Design Manual

Design Manual PDF Author:
Publisher:
ISBN:
Category : Chemicals
Languages : en
Pages : 132

Book Description


Development of Novel Bioelectrochemical Membrane Separation Technologies for Wastewater Treatment and Resource Recovery

Development of Novel Bioelectrochemical Membrane Separation Technologies for Wastewater Treatment and Resource Recovery PDF Author: Yunkun Wang
Publisher: Springer Nature
ISBN: 9811530785
Category : Science
Languages : en
Pages : 157

Book Description
The most commonly used biological wastewater treatment technologies still have serious technical-economical and sustainability-related limitations, due to their high energy requirements, poor effluent quality, and lack of energy and resource recovery processes. In this thesis, novel electrochemical membrane bioreactors (EMBRs), which take advantage of membrane separation and bioelectrochemical techniques, are developed for wastewater treatment and the simultaneous recovery of energy and resources. Above all, this innovative system holds great promise for the efficient wastewater treatment and energy recovery. It can potentially recover net energy from wastewater while at the same time harvesting high-quality effluent. The book also provides a proof-of-concept study showing that electrochemical control might offer a promising in-situ means of suppressing membrane fouling. Lastly, by integrating electrodialysis into EMBRs, phosphate separation and recovery are achieved. Hence, these new EMBR techniques provide viable alternatives for sustainable wastewater treatment and resource recovery.