Investigation Into the Growth Mechanisms of Carbon Nanotubes Formed Using Thermal Chemical Vapour Deposition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Investigation Into the Growth Mechanisms of Carbon Nanotubes Formed Using Thermal Chemical Vapour Deposition PDF full book. Access full book title Investigation Into the Growth Mechanisms of Carbon Nanotubes Formed Using Thermal Chemical Vapour Deposition by William Murray Whyte. Download full books in PDF and EPUB format.

Investigation Into the Growth Mechanisms of Carbon Nanotubes Formed Using Thermal Chemical Vapour Deposition

Investigation Into the Growth Mechanisms of Carbon Nanotubes Formed Using Thermal Chemical Vapour Deposition PDF Author: William Murray Whyte
Publisher:
ISBN:
Category : Carbon
Languages : en
Pages : 0

Book Description


Investigation Into the Growth Mechanisms of Carbon Nanotubes Formed Using Thermal Chemical Vapour Deposition

Investigation Into the Growth Mechanisms of Carbon Nanotubes Formed Using Thermal Chemical Vapour Deposition PDF Author: William Murray Whyte
Publisher:
ISBN:
Category : Carbon
Languages : en
Pages : 0

Book Description


In Situ Transmission Electron Microscopy Studies of Carbon Nanotube Nucleation Mechanism and Carbon Nanotube-Clamped Metal Atomic Chains

In Situ Transmission Electron Microscopy Studies of Carbon Nanotube Nucleation Mechanism and Carbon Nanotube-Clamped Metal Atomic Chains PDF Author: Dai-Ming Tang
Publisher: Springer Science & Business Media
ISBN: 3642372597
Category : Technology & Engineering
Languages : en
Pages : 131

Book Description
Using an in situ transmission electron microscopy (TEM) approach to investigate the growth mechanism of carbon nanotubes (CNTs) as well as the fabrication and properties of CNT-clamped metal atomic chains (MACs) is the focus of the research summarized in this thesis. The application of an in situ TEM approach in the above-mentioned research provides not only real-time observation but also monitored machining and structural evolvement at the atomic level. In this thesis, the author introduces a CNT tubular nano furnace that can be operated under TEM for investigation of the CNT nucleation mechanism. By studying the nucleation process of CNTs in the presence of various catalysts, including iron-based metallic catalysts and silicon oxide-based non-metallic catalysts, the physical states of the catalysts as well as the nucleation and growth process of CNTs are revealed. Based on the understanding of the nucleation mechanism, the author proposes a hetero-epitaxial growth strategy of CNTs from boron nitride, which provides a new route for the controllable growth of CNTs. In addition, the author presents an electron beam-assisted nanomachining technique and the fabrication of a CNT-clamped MAC prototype device based on this technique. The formation process of CNT-clamped Fe atomic chains (ACs) can be monitored with atomic resolution. The demonstrated quantized conductance and uninfluenced half-metallic properties of Fe ACs indicate that CNTs can be promising nanoscale electrodes or interconnectors for the linking and assembly of nano and subnano structures.

Carbon Nanotube Growth on Tool Steel Substrates by Thermal Chemical Vapor Deposition (CVD)

Carbon Nanotube Growth on Tool Steel Substrates by Thermal Chemical Vapor Deposition (CVD) PDF Author: Gulfem Ipek Nasuf
Publisher:
ISBN:
Category :
Languages : en
Pages : 120

Book Description
Carbon nanotubes (CNTs) grown over metallic surfaces by chemical vapor deposition dramatically improve performances of these materials in case of utilizing them as electrodes or tribologically active materials. Proper adherence is necessitated for the purpose of lowering the contact resistance and increasing the mechanical robustness between the metallic surface and carbon nanotubes. This is attained via the direct growth of carbon nanotubes on the surface. However, a better understanding of the elements affecting the growth is essential to control the CNT density and alignment. In this study, comprehension of the effect of substrate surface properties and thermal chemical vapor deposition process parameters is achieved by observing the effectiveness of various pretreatment methods applied onto to modify the surface texture of different tool steel substrates and distinct synthesis conditions. Possible growth mechanism of CNTs on metallic substrates is discussed based on scanning electron microscope (SEM) and transmission electron microscope (TEM) observations. We propose a new treatment method for metallic substrates which uses hydrogen gas. This method causes the formation of dense and small-diameter nanotubes independent of the chemical composition of the metallic substrate.

Graphite Fibers and Filaments

Graphite Fibers and Filaments PDF Author: Mildred S. Dresselhaus
Publisher: Springer Science & Business Media
ISBN: 3642833799
Category : Technology & Engineering
Languages : en
Pages : 391

Book Description
This book was begun after three of the present authors gave a series of in vited talks on the subject of the structure and properties of carbon filaments. This was at a conference on the subject of optical obscuration, for which submicrometer diameter filaments with high length-to-diameter ratios have potential applications. The audience response to these talks illustrated the need of just one scientific community for a broader knowledge of the struc ture and properties of these interesting materials. Following the conference it was decided to expand the material presented in the conference proceedings. The aim was to include in a single volume a description of the physical properties of carbon fibers and filaments. The research papers on this topic are spread widely in the literature and are found in a broad assortment of physics, chemistry, materials science and engineering and polymer science journals and conference proceedings (some of which are obscure). Accordingly, our goal was to produce a book on the subject which would enable students and other researchers working in the field to gain an overview of the subject up to about 1987.

Carbon Nanotube Science

Carbon Nanotube Science PDF Author: Peter J. F. Harris
Publisher: Cambridge University Press
ISBN: 113947815X
Category : Technology & Engineering
Languages : en
Pages : 315

Book Description
Carbon nanotubes represent one of the most exciting research areas in modern science. These molecular-scale carbon tubes are the stiffest and strongest fibres known, with remarkable electronic properties, and potential applications in a wide range of fields. Carbon Nanotube Science is a concise, accessible book, presenting the basic knowledge that graduates and researchers need to know. Based on the successful Carbon Nanotubes and Related Structures, this book focuses solely on carbon nanotubes, covering the major advances made in recent years in this rapidly developing field. Chapters focus on electronic properties, chemical and bimolecular functionalisation, nanotube composites and nanotube-based probes and sensors. The book begins with a comprehensive discussion of synthesis, purification and processing methods. With its comprehensive coverage of this active research field, this book will appeal to researchers in a broad range of disciplines, including nanotechnology, engineering, materials science and physics.

Handbook of Carbon Nanotubes

Handbook of Carbon Nanotubes PDF Author: Jiji Abraham
Publisher: Springer Nature
ISBN: 3030913465
Category : Technology & Engineering
Languages : en
Pages : 2099

Book Description
This Handbook covers the fundamentals of carbon nanotubes (CNT), their composites with different polymeric materials (both natural and synthetic) and their potential advanced applications. Three different parts dedicated to each of these aspects are provided, with chapters written by worldwide experts in the field. It provides in-depth information about this material serving as a reference book for a broad range of scientists, industrial practitioners, graduate and undergraduate students, and other professionals in the fields of polymer science and engineering, materials science, surface science, bioengineering and chemical engineering. Part 1 comprises 22 chapters covering early stages of the development of CNT, synthesis techniques, growth mechanism, the physics and chemistry of CNT, various innovative characterization techniques, the need of functionalization and different types of functionalization methods as well as the different properties of CNT. A full chapter is devoted to theory and simulation aspects. Moreover, it pursues a significant amount of work on life cycle analysis of CNT and toxicity aspects. Part 2 covers CNT-based polymer nanocomposites in approximately 23 chapters. It starts with a short introduction about polymer nanocomposites with special emphasis on CNT-based polymer nanocomposites, different manufacturing techniques as well as critical issues concerning CNT-based polymer nanocomposites. The text deeply reviews various classes of polymers like thermoset, elastomer, latex, amorphous thermoplastic, crystalline thermoplastic and polymer fibers used to prepare CNT based polymer composites. It provides detailed awareness about the characterization of polymer composites. The morphological, rheological, mechanical, viscoelastic, thermal, electrical, electromagnetic shielding properties are discussed in detail. A chapter dedicated to the simulation and multiscale modelling of polymer nanocomposites is an additional attraction of this part of the Handbook. Part 3 covers various potential applications of CNT in approximately 27 chapters. It focuses on individual applications of CNT including mechanical applications, energy conversion and storage applications, fuel cells and water splitting, solar cells and photovoltaics, sensing applications, nanofluidics, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, non-linear optical applications, piezo electric applications, agriculture applications, biomedical applications, thermal materials, environmental remediation applications, anti-microbial and antibacterial properties and other miscellaneous applications and multi-functional applications of CNT based polymer nanocomposites. One chapter is fully focussed on carbon nanotube research developments: published papers and patents. Risks associated with carbon nanotubes and competitive analysis of carbon nanotubes with other carbon allotropes are also addressed in this Handbook.

Perspective of Carbon Nanotubes

Perspective of Carbon Nanotubes PDF Author: Hosam El-Din Saleh
Publisher: BoD – Books on Demand
ISBN: 1789844010
Category : Technology & Engineering
Languages : en
Pages : 250

Book Description
Carbon nanotubes belong to new nanomaterials and have been known for almost 20 years, but their history is somewhat lengthier. They have been identified as promising candidates for various applications.High-temperature preparation techniques are conventional techniques for the synthesis of carbon nanotubes using arc discharge or laser ablation, but today these methods are being replaced by low-temperature vapor deposition techniques, since orientation, alignment, nanotube length, diameter, purity, and density of carbon nanotubes can be precisely controlled. The synthesis of carbon nanotubes by chemical vapor deposition on catalyst arrays leads to nanotube models grown from specific sites on surfaces. The controlled synthesis of nanotubes opens up interesting possibilities in nanoscience and nanotechnologies, including electrical, mechanical and electromechanical properties and devices, chemical functionalization, surface chemistry and photochemistry, molecular sensors, and interfacing with moderate biological systems.Carbon nanotubes are used in many applications due to their unique electrical, mechanical, optical, thermal, and other properties. Conductive and high-strength composite materials, energy saving and energy conversion devices, sensors, visualization of field emissions and sources of radiation, means for storing hydrogen, and nanoscale semiconductor devices, probes, and interconnections are some of the many applications of carbon nanotubes.

Reliable Growth of Vertically Aligned Carbon Nanotube Arrays by Chemical Vapor Deposition and In-situ Measurement of Fundamental Growth Kinetics in Oxygen-free Conditions

Reliable Growth of Vertically Aligned Carbon Nanotube Arrays by Chemical Vapor Deposition and In-situ Measurement of Fundamental Growth Kinetics in Oxygen-free Conditions PDF Author: JUNG BIN. IN
Publisher:
ISBN:
Category :
Languages : en
Pages : 196

Book Description
Vertically-aligned carbon nanotube (VACNT) arrays are both an important technological system, and a fascinating system for studying basic principles of nanomaterial synthesis. However, despite continuing efforts for the past decade, important questions about this process remain largely unexplained. Recently, nanotube research investigations have been conducted, aiming at revealing the underlying growth mechanisms, rather than merely studying the feasibility on new growth methods. Nonetheless, growth deactivation and the accompanying termination mechanisms still remain a topic of nanotube synthesis science. Due to the extremely small size, however, direct characterization of various transport and conversion events occurring at the catalyst surface is not an easy task. Thus investigations on growth kinetics are the first step to resolve questions about growth mechanism. Before exploring kinetic aspects of the growth process, one must achieve reliable growth conditions since growth non-reproducibility retards obtaining reliable growth data and undermines the scientific value of the data. In order to improve growth reliability, several factors that may contribute to growth non-reproducibility were identified and thereafter mitigated. Firstly, a simulation study was conducted to achieve insight into temperature and velocity profile of gases inside the reactor since gas flow dynamics can render growth environment near the substrate non-uniform. Interestingly, when argon gas was used as the main carrier gas, natural convective flow emerged, generating flow circulation before the gas reached the substrate placed at the center of the tube reactor. This flow circulation was not favorable for controlled gas introduction. This problem could be resolved by using a more heat- and momentum- conductive gas such as helium. Secondly, atomic force microscopy of annealed catalyst revealed that the aluminum sub-layer was not thermally stable at the growth temperature although this material has been widely used as a barrier layer to avoid silicide formation of catalyst on silicon substrates. In this respect, aluminum oxide should be a better choice, but under-stoichiometry of the aluminum oxide layer, which originated from sputter target degradation, affected thermal stability of the layer. Reactive sputtering by oxygen addition greatly enhanced thermal stability, and finally defect-free catalyst nanoparticles were formed by thermal annealing. Thirdly, the effect of the small part-per-million levels of oxygen-containing species on VACNT growth revealed that oxygen-containing gas impurities in nominally pure gas sources have a great influence on growth kinetics in a positive way; their presence increases catalyst lifetime and growth yield. However, the kinetic behavior that is highly sensitive to gas purity is prone to showing an interfering kinetic trend where the real mechanism is masked by the significant gas impurity effect. The stark difference in catalytic lifetime after the introduction of high-performance gas purifiers shows that extremely tight control of the reaction gas composition purity is necessary to obtain controlled growth of CNTs under atmospheric chemical vapor deposition (CVD) conditions. Finally, more reliable growth of VACNTs was achieved, and thereafter the next step for fundamental growth kinetics measurement was followed. Finally, the CVD system was equipped with an optical micrometer that enables in-situ measurement of the height of growing VACNTs, which have advantageous structure facilitating measurement of growth kinetics since the array height has a robust correlation with growth yield and thereby growth rate. Various ethylene and hydrogen combinations were examined to capture growth kinetics related to different gas environment. The measured initial growth rates were linearly proportional to ethylene concentration, whereas a reciprocal relation was observed with respect to hydrogen concentration. The apparent activation energy was higher than reported in references. Flow rate variation experiments revealed that gas phase reaction is involved as the crucial growth step, which supports the observed high activation energy. Consequently, a growth model was proposed so that it could reasonably fit the initial growth rate data. Kinetic aspects related to growth deactivation were explored by measuring the final growth height and catalyst lifetime. Unlike growth with unpurified gases, growth became much less sensitive to gas composition after purification. Importantly, it was observed that growth deactivates by deficit of carbon source when relatively low ethylene was introduced. This result is surprising since ethylene pressure should be high enough at the catalyst, considering the calculated sticking coefficient of ethylene is very low, approximately 10^-5. Thus it substantiates the idea that catalyst-mediated gas pretreatment process is critical to sustain nanotube growth. Importantly, this idea challenges the widely accepted growth termination concept whereby nanotube stops growing due to catalyst encapsulation by excessive carbon. Indeed, reduced flow rate of gas mixture increased growth yield remarkably by promoting the gas pretreatment over the catalyst. Catalyst ripening, or steric hindrance by interaction of nanotubes can be an alternative reason for growth termination, but analysis of morphologies of the annealed catalyst and as-grown nanotubes revealed that their effects were not significant for the corresponding growth conditions.

Carbon Nanotubes

Carbon Nanotubes PDF Author: Christian Peter Deck
Publisher:
ISBN:
Category :
Languages : en
Pages : 375

Book Description
Carbon nanotubes (CNTs) possess exceptional material properties, making them desirable for use in a variety of applications. In this work, CNTs were grown using two distinct catalytic chemical vapor deposition (CVD) procedures, floating catalyst CVD and thermal CVD, which differed in the method of catalyst introduction. Reaction conditions were optimized to synthesize nanotubes with desired characteristics, and the effects of varying growth parameters were studied. These parameters included gas composition, temperature, reaction duration, and catalyst and substrate material. The CNT products were then examined using several approaches. For each CVD method, nanotube growth rates were determined and the formation and termination mechanisms were investigated. The effects of reaction parameters on nanotube diameters and morphology were also explored to identify means of controlling these important properties. In addition to investigating the effects of different growth parameters, the material properties of nanotubes were also studied. The floating catalyst CVD method produced thick mats of nanotubes, and the mechanical response of these samples was examined using in-situ compression and tension testing. These results indicated that mat structure is composed of discontinuous nanotubes, and a time-dependent response was also observed. In addition, the electrical resistance of bulk CNT samples was found to increase for tubes grown with higher catalyst concentrations and with bamboo morphologies. The properties of nanotubes synthesized using thermal CVD were also examined. Mechanical testing was performed using the same in-situ compression approach developed for floating catalyst CVD samples. A second characterization method was devised, where an optical approach was used to measure the deflection of patterned nanotubes exposed to an applied fluid flow. This response was also simulated, and comparisons with the experimental data were used to determine the flexural rigidity of these CNT arrays. In this work, two potential applications for carbon nanotubes were also considered. Using the experimental method employed for flexural rigidity measurements, a carbon nanotube-based fluid flow sensor that offered fast response and repeatability was demonstrated. There is also great interest in CNTs for high strength applications, and the growth of nanotubes for the spin-processing of CNTs into micron-scale fibers was also investigated.

Single-Walled Carbon Nanotubes

Single-Walled Carbon Nanotubes PDF Author: Melorina Dolafi Rezaee
Publisher: American Chemical Society
ISBN: 0841299412
Category : Technology & Engineering
Languages : en
Pages : 158

Book Description
Single-walled carbon nanotubes (SWCNTs) are cylindrical one-dimensional nanomaterials made of single-layered graphene sheets. They possess unique properties because of their specific structure. Due to their distinct electronic structure and impressive thermal, mechanical, and optical properties, SWCNTs have great applications in biomedicine, energy storage, nanomechanical devices, etc. So far, many methods have been developed to synthesize SWCNTs. Despite the great achievements in the synthesis and applications of SWCNTs in the past few decades, many challenges remain. This primer will equip the reader with a foundational understanding of the growth mechanisms of SWCNTs and the advantages and disadvantages of the process and growth conditions of the various techniques. The reader will also learn how to relate the properties and structure of these materials to their specific functionality in the desired application.