Author: Andrew F. Bennett
Publisher: Cambridge University Press
ISBN: 1139434535
Category : Science
Languages : en
Pages : 260
Book Description
Inverse Modeling of the Ocean and Atmosphere is a graduate-level book for students of oceanography and meteorology, and anyone interested in combining computer models and observations of the hydrosphere or solid earth. A step-by-step development of maximally efficient inversion algorithms, using ideal models, is complemented by computer codes and comprehensive details for realistic models. Variational tools and statistical concepts are concisely introduced, and applications to contemporary research models, together with elaborate observing systems, are examined in detail. The book offers a review of the various alternative approaches, and further advanced research topics are discussed. Derived from the author's lecture notes, this book constitutes an ideal course companion for graduate students, as well as being a valuable reference source for researchers and managers in theoretical earth science, civil engineering and applied mathematics.
Inverse Modeling of the Ocean and Atmosphere
Author: Andrew F. Bennett
Publisher: Cambridge University Press
ISBN: 1139434535
Category : Science
Languages : en
Pages : 260
Book Description
Inverse Modeling of the Ocean and Atmosphere is a graduate-level book for students of oceanography and meteorology, and anyone interested in combining computer models and observations of the hydrosphere or solid earth. A step-by-step development of maximally efficient inversion algorithms, using ideal models, is complemented by computer codes and comprehensive details for realistic models. Variational tools and statistical concepts are concisely introduced, and applications to contemporary research models, together with elaborate observing systems, are examined in detail. The book offers a review of the various alternative approaches, and further advanced research topics are discussed. Derived from the author's lecture notes, this book constitutes an ideal course companion for graduate students, as well as being a valuable reference source for researchers and managers in theoretical earth science, civil engineering and applied mathematics.
Publisher: Cambridge University Press
ISBN: 1139434535
Category : Science
Languages : en
Pages : 260
Book Description
Inverse Modeling of the Ocean and Atmosphere is a graduate-level book for students of oceanography and meteorology, and anyone interested in combining computer models and observations of the hydrosphere or solid earth. A step-by-step development of maximally efficient inversion algorithms, using ideal models, is complemented by computer codes and comprehensive details for realistic models. Variational tools and statistical concepts are concisely introduced, and applications to contemporary research models, together with elaborate observing systems, are examined in detail. The book offers a review of the various alternative approaches, and further advanced research topics are discussed. Derived from the author's lecture notes, this book constitutes an ideal course companion for graduate students, as well as being a valuable reference source for researchers and managers in theoretical earth science, civil engineering and applied mathematics.
Inverse Modeling of the Ocean and Atmosphere
Author: Andrew F. Bennett
Publisher: Cambridge University Press
ISBN: 9780521813730
Category : Science
Languages : en
Pages : 0
Book Description
Inverse Modeling of the Ocean and Atmosphere is a graduate-level textbook for students of oceanography and meteorology, and anyone interested in combining computer models and observations of the hydrosphere or solid earth. A step-by-step development of maximally-efficient inversion algorithms, using ideal models, is complemented by computer codes and comprehensive details for realistic models. Variational tools and statistical concepts are concisely introduced, applications to contemporary research models are examined in detail and further advanced research topics are discussed.
Publisher: Cambridge University Press
ISBN: 9780521813730
Category : Science
Languages : en
Pages : 0
Book Description
Inverse Modeling of the Ocean and Atmosphere is a graduate-level textbook for students of oceanography and meteorology, and anyone interested in combining computer models and observations of the hydrosphere or solid earth. A step-by-step development of maximally-efficient inversion algorithms, using ideal models, is complemented by computer codes and comprehensive details for realistic models. Variational tools and statistical concepts are concisely introduced, applications to contemporary research models are examined in detail and further advanced research topics are discussed.
Modeling of Atmospheric Chemistry
Author: Guy P. Brasseur
Publisher: Cambridge University Press
ISBN: 1108210953
Category : Science
Languages : en
Pages : 631
Book Description
Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.
Publisher: Cambridge University Press
ISBN: 1108210953
Category : Science
Languages : en
Pages : 631
Book Description
Mathematical modeling of atmospheric composition is a formidable scientific and computational challenge. This comprehensive presentation of the modeling methods used in atmospheric chemistry focuses on both theory and practice, from the fundamental principles behind models, through to their applications in interpreting observations. An encyclopaedic coverage of methods used in atmospheric modeling, including their advantages and disadvantages, makes this a one-stop resource with a large scope. Particular emphasis is given to the mathematical formulation of chemical, radiative, and aerosol processes; advection and turbulent transport; emission and deposition processes; as well as major chapters on model evaluation and inverse modeling. The modeling of atmospheric chemistry is an intrinsically interdisciplinary endeavour, bringing together meteorology, radiative transfer, physical chemistry and biogeochemistry, making the book of value to a broad readership. Introductory chapters and a review of the relevant mathematics make this book instantly accessible to graduate students and researchers in the atmospheric sciences.
Beyond El Niño
Author: Antonio Navarra
Publisher: Springer Science & Business Media
ISBN: 3642583695
Category : Science
Languages : en
Pages : 412
Book Description
The interest and level of research into climate variability has risen dramatically in recent years, and major breakthroughs have been achieved in the understanding and modelling of seasonal to interannual climate variability and prediction. At the same time, the documentation of longer term variability and its underlying mecha nisms have progressed considerably. Within the European Commission's Environment and Climate research programs several important projects have been supported in these areas - including the "Dec adal and Interdecadal Climate variability Experiment" (DICE) which forms the basis of this book. Within the EC supported climate research, we see an increasing importance of research into climate variability, as is evidenced in the upcoming Fifth Framework Programme's Key Action on Global Change, Climate and Biodi versity. This is because of the obvious potential socio-economic benefits from sea sonal to decadal scale climate prediction and equally important for the fundamental understanding of the climate system to help improve the quality and reliability of future climate change and mankind's current interference with it. The DICE group has performed important and pioneering work, and we hope this book will receive the wide distribution and recognition it deserves. We wel come the contributions from distinguished researchers from US, Japan and Canada to the EC's DICE group towards completing the scope of the book and as an exam ple of international cooperation which is essential in such a high-level scientific endeavor.
Publisher: Springer Science & Business Media
ISBN: 3642583695
Category : Science
Languages : en
Pages : 412
Book Description
The interest and level of research into climate variability has risen dramatically in recent years, and major breakthroughs have been achieved in the understanding and modelling of seasonal to interannual climate variability and prediction. At the same time, the documentation of longer term variability and its underlying mecha nisms have progressed considerably. Within the European Commission's Environment and Climate research programs several important projects have been supported in these areas - including the "Dec adal and Interdecadal Climate variability Experiment" (DICE) which forms the basis of this book. Within the EC supported climate research, we see an increasing importance of research into climate variability, as is evidenced in the upcoming Fifth Framework Programme's Key Action on Global Change, Climate and Biodi versity. This is because of the obvious potential socio-economic benefits from sea sonal to decadal scale climate prediction and equally important for the fundamental understanding of the climate system to help improve the quality and reliability of future climate change and mankind's current interference with it. The DICE group has performed important and pioneering work, and we hope this book will receive the wide distribution and recognition it deserves. We wel come the contributions from distinguished researchers from US, Japan and Canada to the EC's DICE group towards completing the scope of the book and as an exam ple of international cooperation which is essential in such a high-level scientific endeavor.
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)
Author: Seon Ki Park
Publisher: Springer Science & Business Media
ISBN: 3642350887
Category : Science
Languages : en
Pages : 736
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Publisher: Springer Science & Business Media
ISBN: 3642350887
Category : Science
Languages : en
Pages : 736
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. III)
Author: Seon Ki Park
Publisher: Springer
ISBN: 3319434152
Category : Science
Languages : en
Pages : 576
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Publisher: Springer
ISBN: 3319434152
Category : Science
Languages : en
Pages : 576
Book Description
This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.
Ocean-Atmosphere Interactions of Gases and Particles
Author: Peter S. Liss
Publisher: Springer
ISBN: 3642256430
Category : Science
Languages : en
Pages : 366
Book Description
The oceans and atmosphere interact through various processes, including the transfer of momentum, heat, gases and particles. In this book leading international experts come together to provide a state-of-the-art account of these exchanges and their role in the Earth-system, with particular focus on gases and particles. Chapters in the book cover: i) the ocean-atmosphere exchange of short-lived trace gases; ii) mechanisms and models of interfacial exchange (including transfer velocity parameterisations); iii) ocean-atmosphere exchange of the greenhouse gases carbon dioxide, methane and nitrous oxide; iv) ocean atmosphere exchange of particles and v) current and future data collection and synthesis efforts. The scope of the book extends to the biogeochemical responses to emitted / deposited material and interactions and feedbacks in the wider Earth-system context. This work constitutes a highly detailed synthesis and reference; of interest to higher-level university students (Masters, PhD) and researchers in ocean-atmosphere interactions and related fields (Earth-system science, marine / atmospheric biogeochemistry / climate). Production of this book was supported and funded by the EU COST Action 735 and coordinated by the International SOLAS (Surface Ocean- Lower Atmosphere Study) project office.
Publisher: Springer
ISBN: 3642256430
Category : Science
Languages : en
Pages : 366
Book Description
The oceans and atmosphere interact through various processes, including the transfer of momentum, heat, gases and particles. In this book leading international experts come together to provide a state-of-the-art account of these exchanges and their role in the Earth-system, with particular focus on gases and particles. Chapters in the book cover: i) the ocean-atmosphere exchange of short-lived trace gases; ii) mechanisms and models of interfacial exchange (including transfer velocity parameterisations); iii) ocean-atmosphere exchange of the greenhouse gases carbon dioxide, methane and nitrous oxide; iv) ocean atmosphere exchange of particles and v) current and future data collection and synthesis efforts. The scope of the book extends to the biogeochemical responses to emitted / deposited material and interactions and feedbacks in the wider Earth-system context. This work constitutes a highly detailed synthesis and reference; of interest to higher-level university students (Masters, PhD) and researchers in ocean-atmosphere interactions and related fields (Earth-system science, marine / atmospheric biogeochemistry / climate). Production of this book was supported and funded by the EU COST Action 735 and coordinated by the International SOLAS (Surface Ocean- Lower Atmosphere Study) project office.
Ocean Circulation and Climate
Author: Andreas Schiller
Publisher: Elsevier Inc. Chapters
ISBN: 0128058714
Category : Science
Languages : en
Pages : 39
Book Description
The past 20 years have provided us with an unprecedented ability to observe, monitor, and forecast the oceans. In situ and remotely sensed ocean observations in combination with ocean general circulation models using data assimilation and state estimation methods underpin climate applications. State estimation aims to provide a dynamically consistent estimation of ocean fields, of errors of these fields, and of certain model parameters such as mixing coefficients. Conversely, data assimilation tools have been developed predominantly for ocean prediction applications and ocean reanalyses. This chapter describes approaches used by state estimation and data assimilation systems in synthesizing observations and model dynamics. We highlight some applications, including their limitations for climate research, and address the challenges ahead in relation to the ocean observing system.
Publisher: Elsevier Inc. Chapters
ISBN: 0128058714
Category : Science
Languages : en
Pages : 39
Book Description
The past 20 years have provided us with an unprecedented ability to observe, monitor, and forecast the oceans. In situ and remotely sensed ocean observations in combination with ocean general circulation models using data assimilation and state estimation methods underpin climate applications. State estimation aims to provide a dynamically consistent estimation of ocean fields, of errors of these fields, and of certain model parameters such as mixing coefficients. Conversely, data assimilation tools have been developed predominantly for ocean prediction applications and ocean reanalyses. This chapter describes approaches used by state estimation and data assimilation systems in synthesizing observations and model dynamics. We highlight some applications, including their limitations for climate research, and address the challenges ahead in relation to the ocean observing system.
The Theory of Large-Scale Ocean Circulation
Author: R. M. Samelson
Publisher: Cambridge University Press
ISBN: 1139499009
Category : Science
Languages : en
Pages : 209
Book Description
Mounting evidence that human activities are substantially modifying the Earth's climate brings a new imperative to the study of the ocean's large-scale circulation. This textbook provides a concise but comprehensive introduction to the theory of large-scale ocean circulation, as it is currently understood and established. Students and instructors will benefit from the carefully chosen chapter-by-chapter exercises. This advanced textbook is invaluable for graduate students and researchers in the fields of oceanic, atmospheric and climate sciences, and other geophysical scientists, as well as physicists and mathematicians with a quantitative interest in the planetary fluid environment.
Publisher: Cambridge University Press
ISBN: 1139499009
Category : Science
Languages : en
Pages : 209
Book Description
Mounting evidence that human activities are substantially modifying the Earth's climate brings a new imperative to the study of the ocean's large-scale circulation. This textbook provides a concise but comprehensive introduction to the theory of large-scale ocean circulation, as it is currently understood and established. Students and instructors will benefit from the carefully chosen chapter-by-chapter exercises. This advanced textbook is invaluable for graduate students and researchers in the fields of oceanic, atmospheric and climate sciences, and other geophysical scientists, as well as physicists and mathematicians with a quantitative interest in the planetary fluid environment.
Frontiers in Decadal Climate Variability
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309444640
Category : Science
Languages : en
Pages : 92
Book Description
Many factors contribute to variability in Earth's climate on a range of timescales, from seasons to decades. Natural climate variability arises from two different sources: (1) internal variability from interactions among components of the climate system, for example, between the ocean and the atmosphere, and (2) natural external forcings, such as variations in the amount of radiation from the Sun. External forcings on the climate system also arise from some human activities, such as the emission of greenhouse gases (GHGs) and aerosols. The climate that we experience is a combination of all of these factors. Understanding climate variability on the decadal timescale is important to decision-making. Planners and policy makers want information about decadal variability in order to make decisions in a range of sectors, including for infrastructure, water resources, agriculture, and energy. In September 2015, the National Academies of Sciences, Engineering, and Medicine convened a workshop to examine variability in Earth's climate on decadal timescales, defined as 10 to 30 years. During the workshop, ocean and climate scientists reviewed the state of the science of decadal climate variability and its relationship to rates of human-caused global warming, and they explored opportunities for improvement in modeling and observations and assessing knowledge gaps. Frontiers in Decadal Climate Variability summarizes the presentations and discussions from the workshop.
Publisher: National Academies Press
ISBN: 0309444640
Category : Science
Languages : en
Pages : 92
Book Description
Many factors contribute to variability in Earth's climate on a range of timescales, from seasons to decades. Natural climate variability arises from two different sources: (1) internal variability from interactions among components of the climate system, for example, between the ocean and the atmosphere, and (2) natural external forcings, such as variations in the amount of radiation from the Sun. External forcings on the climate system also arise from some human activities, such as the emission of greenhouse gases (GHGs) and aerosols. The climate that we experience is a combination of all of these factors. Understanding climate variability on the decadal timescale is important to decision-making. Planners and policy makers want information about decadal variability in order to make decisions in a range of sectors, including for infrastructure, water resources, agriculture, and energy. In September 2015, the National Academies of Sciences, Engineering, and Medicine convened a workshop to examine variability in Earth's climate on decadal timescales, defined as 10 to 30 years. During the workshop, ocean and climate scientists reviewed the state of the science of decadal climate variability and its relationship to rates of human-caused global warming, and they explored opportunities for improvement in modeling and observations and assessing knowledge gaps. Frontiers in Decadal Climate Variability summarizes the presentations and discussions from the workshop.