Inverse Eigenvalue Problems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Inverse Eigenvalue Problems PDF full book. Access full book title Inverse Eigenvalue Problems by Moody Chu. Download full books in PDF and EPUB format.

Inverse Eigenvalue Problems

Inverse Eigenvalue Problems PDF Author: Moody Chu
Publisher: Oxford University Press
ISBN: 0198566646
Category : Mathematics
Languages : en
Pages : 408

Book Description
Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.

Inverse Eigenvalue Problems

Inverse Eigenvalue Problems PDF Author: Moody Chu
Publisher: Oxford University Press
ISBN: 0198566646
Category : Mathematics
Languages : en
Pages : 408

Book Description
Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions--the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems.This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.

An Introduction to the Mathematical Theory of Inverse Problems

An Introduction to the Mathematical Theory of Inverse Problems PDF Author: Andreas Kirsch
Publisher: Springer Science & Business Media
ISBN: 1441984747
Category : Mathematics
Languages : en
Pages : 314

Book Description
This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.

Numerical Methods for Large Eigenvalue Problems

Numerical Methods for Large Eigenvalue Problems PDF Author: Yousef Saad
Publisher: SIAM
ISBN: 9781611970739
Category : Mathematics
Languages : en
Pages : 292

Book Description
This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Each chapter was updated by shortening or deleting outdated topics, adding topics of more recent interest, and adapting the Notes and References section. Significant changes have been made to Chapters 6 through 8, which describe algorithms and their implementations and now include topics such as the implicit restart techniques, the Jacobi-Davidson method, and automatic multilevel substructuring.

Dynamical Inverse Problems: Theory and Application

Dynamical Inverse Problems: Theory and Application PDF Author: Graham M. L. Gladwell
Publisher: Springer Science & Business Media
ISBN: 3709106966
Category : Technology & Engineering
Languages : en
Pages : 229

Book Description
The papers in this volume present an overview of the general aspects and practical applications of dynamic inverse methods, through the interaction of several topics, ranging from classical and advanced inverse problems in vibration, isospectral systems, dynamic methods for structural identification, active vibration control and damage detection, imaging shear stiffness in biological tissues, wave propagation, to computational and experimental aspects relevant for engineering problems.

Inverse Eigenvalue Problems

Inverse Eigenvalue Problems PDF Author: Moody Chu
Publisher: OUP Oxford
ISBN: 0191524220
Category : Mathematics
Languages : en
Pages : 406

Book Description
Inverse eigenvalue problems arise in a remarkable variety of applications and associated with any inverse eigenvalue problem are two fundamental questions—the theoretical issue of solvability and the practical issue of computability. Both questions are difficult and challenging. In this text, the authors discuss the fundamental questions, some known results, many applications, mathematical properties, a variety of numerical techniques, as well as several open problems. This is the first book in the authoritative Numerical Mathematics and Scientific Computation series to cover numerical linear algebra, a broad area of numerical analysis. Authored by two world-renowned researchers, the book is aimed at graduates and researchers in applied mathematics, engineering and computer science and makes an ideal graduate text.

Operator Theory, Operator Algebras, and Matrix Theory

Operator Theory, Operator Algebras, and Matrix Theory PDF Author: Carlos André
Publisher: Birkhäuser
ISBN: 3319724495
Category : Mathematics
Languages : en
Pages : 381

Book Description
This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.

Templates for the Solution of Algebraic Eigenvalue Problems

Templates for the Solution of Algebraic Eigenvalue Problems PDF Author: Zhaojun Bai
Publisher: SIAM
ISBN: 0898714710
Category : Computers
Languages : en
Pages : 430

Book Description
Mathematics of Computing -- Numerical Analysis.

Inverse Scattering Theory and Transmission Eigenvalues

Inverse Scattering Theory and Transmission Eigenvalues PDF Author: Fioralba Cakoni
Publisher: SIAM
ISBN: 1611974461
Category : Mathematics
Languages : en
Pages : 200

Book Description
Inverse scattering theory is a major theme of applied mathematics, and it has applications to such diverse areas as medical imaging, geophysical exploration, and nondestructive testing. The inverse scattering problem is both nonlinear and ill-posed, thus presenting particular problems in the development of efficient inversion algorithms. Although linearized models continue to play an important role in many applications, an increased need to focus on problems in which multiple scattering effects cannot be ignored has led to a central role for nonlinearity, and the possibility of collecting large amounts of data over limited regions of space means that the ill-posed nature of the inverse scattering problem has become a problem of central importance.? Initial efforts to address the nonlinear and the ill-posed nature of the inverse scattering problem focused on nonlinear optimization methods. While efficient in many situations, strong a priori information is necessary for their implementation. This problem led to a qualitative approach to inverse scattering theory in which the amount of a priori information is drastically reduced, although at the expense of only obtaining limited information about the values of the constitutive parameters. This qualitative approach (the linear sampling method, the factorization method, the theory of transmission eigenvalues, etc.) is the theme of Inverse Scattering Theory and Transmission Eigenvalues.? The authors begin with a basic introduction to the theory, then proceed to more recent developments, including a detailed discussion of the transmission eigenvalue problem; present the new generalized linear sampling method in addition to the well-known linear sampling and factorization methods; and in order to achieve clarification of presentation, focus on the inverse scattering problem for scalar homogeneous media.?

Inverse problems in vibration

Inverse problems in vibration PDF Author: G.M.L. Gladwell
Publisher: Springer Science & Business Media
ISBN: 9401511780
Category : Technology & Engineering
Languages : en
Pages : 272

Book Description
The last thing one settles in writing a book is what one should put in first. Pascal's Pensees Classical vibration theory is concerned, in large part, with the infinitesimal (i. e. , linear) undamped free vibration of various discrete or continuous bodies. One of the basic problems in this theory is the determination of the natural frequencies (eigen frequencies or simply eigenvalues) and normal modes of the vibrating body. A body which is modelled as a discrete system' of rigid masses, rigid rods, massless springs, etc. , will be governed by an ordinary matrix differential equation in time t. It will have a finite number of eigenvalues, and the normal modes will be vectors, called eigenvectors. A body which is modelled as a continuous system will be governed by a partial differential equation in time and one or more spatial variables. It will have an infinite number of eigenvalues, and the normal modes will be functions (eigen functions) of the space variables. In the context of this classical theory, inverse problems are concerned with the construction of a model of a given type; e. g. , a mass-spring system, a string, etc. , which has given eigenvalues and/or eigenvectors or eigenfunctions; i. e. , given spec tral data. In general, if some such spectral data is given, there can be no system, a unique system, or many systems, having these properties.

Numerical Methods for General and Structured Eigenvalue Problems

Numerical Methods for General and Structured Eigenvalue Problems PDF Author: Daniel Kressner
Publisher: Springer Science & Business Media
ISBN: 3540285024
Category : Mathematics
Languages : en
Pages : 272

Book Description
This book is about computing eigenvalues, eigenvectors, and invariant subspaces of matrices. Treatment includes generalized and structured eigenvalue problems and all vital aspects of eigenvalue computations. A unique feature is the detailed treatment of structured eigenvalue problems, providing insight on accuracy and efficiency gains to be expected from algorithms that take the structure of a matrix into account.