Intuitionistic Proof Versus Classical Truth PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Intuitionistic Proof Versus Classical Truth PDF full book. Access full book title Intuitionistic Proof Versus Classical Truth by Enrico Martino. Download full books in PDF and EPUB format.

Intuitionistic Proof Versus Classical Truth

Intuitionistic Proof Versus Classical Truth PDF Author: Enrico Martino
Publisher: Springer
ISBN: 3319743570
Category : Mathematics
Languages : en
Pages : 173

Book Description
This book examines the role of acts of choice in classical and intuitionistic mathematics. Featuring fifteen papers – both new and previously published – it offers a fresh analysis of concepts developed by the mathematician and philosopher L.E.J. Brouwer, the founder of intuitionism. The author explores Brouwer’s idealization of the creative subject as the basis for intuitionistic truth, and in the process he also discusses an important, related question: to what extent does the intuitionistic perspective succeed in avoiding the classical realistic notion of truth? The papers detail realistic aspects in the idealization of the creative subject and investigate the hidden role of choice even in classical logic and mathematics, covering such topics as bar theorem, type theory, inductive evidence, Beth models, fallible models, and more. In addition, the author offers a critical analysis of the response of key mathematicians and philosophers to Brouwer’s work. These figures include Michael Dummett, Saul Kripke, Per Martin-Löf, and Arend Heyting. This book appeals to researchers and graduate students with an interest in philosophy of mathematics, linguistics, and mathematics.

Intuitionistic Proof Versus Classical Truth

Intuitionistic Proof Versus Classical Truth PDF Author: Enrico Martino
Publisher: Springer
ISBN: 3319743570
Category : Mathematics
Languages : en
Pages : 173

Book Description
This book examines the role of acts of choice in classical and intuitionistic mathematics. Featuring fifteen papers – both new and previously published – it offers a fresh analysis of concepts developed by the mathematician and philosopher L.E.J. Brouwer, the founder of intuitionism. The author explores Brouwer’s idealization of the creative subject as the basis for intuitionistic truth, and in the process he also discusses an important, related question: to what extent does the intuitionistic perspective succeed in avoiding the classical realistic notion of truth? The papers detail realistic aspects in the idealization of the creative subject and investigate the hidden role of choice even in classical logic and mathematics, covering such topics as bar theorem, type theory, inductive evidence, Beth models, fallible models, and more. In addition, the author offers a critical analysis of the response of key mathematicians and philosophers to Brouwer’s work. These figures include Michael Dummett, Saul Kripke, Per Martin-Löf, and Arend Heyting. This book appeals to researchers and graduate students with an interest in philosophy of mathematics, linguistics, and mathematics.

What Truth is

What Truth is PDF Author: Mark Jago
Publisher: Oxford University Press
ISBN: 0198823819
Category : Philosophy
Languages : en
Pages : 369

Book Description
Mark Jago offers a new metaphysical account of truth. He argues that to be true is to be made true by the existence of a suitable worldly entity. Truth arises as a relation between a proposition - the content of our sayings, thoughts, beliefs, and so on - and an entity (or entities) in the world.

The Boundary Stones of Thought

The Boundary Stones of Thought PDF Author: Ian Rumfitt
Publisher:
ISBN: 0198733631
Category : Language Arts & Disciplines
Languages : en
Pages : 369

Book Description
Classical logic has been attacked by adherents of rival, anti-realist logical systems: Ian Rumfitt comes to its defence. He considers the nature of logic, and how to arbitrate between different logics. He argues that classical logic may dispense with the principle of bivalence, and may thus be liberated from the dead hand of classical semantics.

A Short Introduction to Intuitionistic Logic

A Short Introduction to Intuitionistic Logic PDF Author: Grigori Mints
Publisher: Springer Science & Business Media
ISBN: 0306463946
Category : Computers
Languages : en
Pages : 130

Book Description
Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs to make the material more accessible. The presentation is based on natural deduction and readers are assumed to be familiar with basic notions of first order logic.

Proof Methods for Modal and Intuitionistic Logics

Proof Methods for Modal and Intuitionistic Logics PDF Author: M. Fitting
Publisher: Springer Science & Business Media
ISBN: 9789027715739
Category : Mathematics
Languages : en
Pages : 574

Book Description
"Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature.

Logical Pluralism

Logical Pluralism PDF Author: JC Beall
Publisher: Oxford University Press
ISBN: 0199288402
Category : Philosophy
Languages : en
Pages : 152

Book Description
Consequence is at the heart of logic, and an account of consequence offers a vital tool in the evaluation of arguments. This text presents what the authors term as 'logical pluralism' arguing that the notion of logical consequence doesn't pin down one deductive consequence relation; it allows for many of them.

What Is Mathematical Logic?

What Is Mathematical Logic? PDF Author: J. N. Crossley
Publisher: Courier Corporation
ISBN: 0486151522
Category : Mathematics
Languages : en
Pages : 99

Book Description
A serious introductory treatment geared toward non-logicians, this survey traces the development of mathematical logic from ancient to modern times and discusses the work of Planck, Einstein, Bohr, Pauli, Heisenberg, Dirac, and others. 1972 edition.

Philosophical and Mathematical Logic

Philosophical and Mathematical Logic PDF Author: Harrie de Swart
Publisher: Springer
ISBN: 3030032558
Category : Philosophy
Languages : en
Pages : 558

Book Description
This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo

Intuitionistic Type Theory

Intuitionistic Type Theory PDF Author: Per Martin-Löf
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 116

Book Description


Constructivism in Mathematics, Vol 1

Constructivism in Mathematics, Vol 1 PDF Author: A.S. Troelstra
Publisher: Elsevier Science
ISBN: 9780444702661
Category : Mathematics
Languages : en
Pages : 355

Book Description
These two volumes cover the principal approaches to constructivism in mathematics. They present a thorough, up-to-date introduction to the metamathematics of constructive mathematics, paying special attention to Intuitionism, Markov's constructivism and Martin-Lof's type theory with its operational semantics. A detailed exposition of the basic features of constructive mathematics, with illustrations from analysis, algebra and topology, is provided, with due attention to the metamathematical aspects. Volume 1 is a self-contained introduction to the practice and foundations of constructivism, and does not require specialized knowledge beyond basic mathematical logic. Volume 2 contains mainly advanced topics of a proof-theoretical and semantical nature.